共检索到 413

The paper presents the strategic project of Tomsk State University devoted to studying the carbon cycle in the arctic land-shelf system. The obtained carbon cycle characteristics should be used for global climate model correction. The main objective of the consortium is to obtain new data on the variability of climatic and biological factors of various ecosystems, monitor them, and create archives of data on their dynamics. The area of the project includes the basins of the Great Siberian Rivers, and the shelf of the adjacent Arctic seas. A consortium of approximately twenty universities and research institutions was formed to study the carbon cycle in various environments, including seas, rivers, wetlands, and permafrost. In addition to studying the carbon cycle, the project also aims to develop methods for carbon sequestration and ecosystems remediation. One of such methods was developed for the assessment and cleanup of bottom sediments from oil and petroleum products as well as other hydrophobic contaminants and has been patented and tested in a series of field trials. Several special monitoring methods are described, such as novel sampling and sample laboratory processing techniques to assess microplastics in the environment; and holographic methods for underwater monitoring of the plankton behavior for early bioindication of hazards in the water area. This is particularly relevant for areas with dangerous objects, such as nuclear power plants, oil platforms, and gas pipelines. The methods of math modeling of the impact of climate change and anthropogenic factors on indigenous and local population lives were used.

期刊论文 2025-05-12 DOI: 10.1007/s13762-025-06544-9 ISSN: 1735-1472

The Arctic experiences rapid climate change, but our ability to predict how this will influence plant communities is hampered by a lack of data on the extent to which different species are associated with particular environmental conditions, how these conditions are interlinked, and how they will change in coming years. Increasing temperatures may negatively affect plants associated with cold areas due to increased competition with warm-adapted species, but less so if local temperature variability is larger than the expected increase. Here we studied the potential drivers of vegetation composition and species richness along coast to inland and altitudinal gradients by the Nuuk fjord in western Greenland using hierarchical modelling of species communities (HMSC) and linear mixed models. Community composition was more strongly associated with random variability at intermediate spatial scales (among plot groups 500 m apart) than with large-scale variability in summer temperature, altitude or soil moisture, and the variation in community composition along the fjord was small. Species richness was related to plant cover, altitude and slope steepness, which explained 42% of the variation, but not to summer temperature. Jointly, this suggests that the direct effect of climate change will be weak, and that many species are associated with microhabitat variability. However, species richness peaked at intermediate cover, suggesting that an increase in plant cover under warming climatic conditions may lead to decreasing plant diversity.

期刊论文 2025-05-09 DOI: 10.1002/ecog.07816 ISSN: 0906-7590

Permafrost degradation is one of the most significant consequences of climate change in the Arctic. During summers, permafrost degradation is evident with cryospheric hazards like retrogressive thaw slumps (RTSs) and active layer detachment slides (ALDs). In parallel, the Arctic has become a popular tourist destination for nature-based activities, with summer being the peak touristic season. In this context, cryospheric hazards pose potential risks for tourists' presence in Arctic national parks and wilderness in general, like in the Yukon. This essay provides the basis for investigating further periglacial, geomorphological and tourism intersections, highlighting the critical need for future interdisciplinary research on thawing permafrost impacts. More so, this requires moving beyond the predominant focus on permafrost impacts on infrastructure and to also consider the direct threats posed to human physical presence in Arctic tourist destinations affected by permafrost degradation. Such interdisciplinary approach is critical not only to mitigate risks, but also to provide policy- and decision-makers with valuable insights for implementing measures and guidelines.

期刊论文 2025-05-01 DOI: 10.1007/s10584-025-03942-3 ISSN: 0165-0009

The Net Ecosystem Carbon Balance (NECB) is a crucial metric for understanding integrated carbon dynamics in Arctic and boreal regions, which are vital to the global carbon cycle. These areas are associated with significant uncertainties and rapid climate change, potentially leading to unpredictable alterations in carbon dynamics. This mini-review examines key components of NECB, including carbon sequestration, methane emissions, lateral carbon transport, herbivore interactions, and disturbances, while integrating insights from recent permafrost region greenhouse gas budget syntheses. We emphasize the need for a holistic approach to quantify the NECB, incorporating all components and their uncertainties. The review highlights recent methodological advances in flux measurements, including improvements in eddy covariance and automatic chamber techniques, as well as progress in modeling approaches and data assimilation. Key research priorities are identified, such as improving the representation of inland waters in process-based models, expanding monitoring networks, and enhancing integration of long-term field observations with modeling approaches. These efforts are essential for accurately quantifying current and future greenhouse gas budgets in rapidly changing northern landscapes, ultimately informing more effective climate change mitigation strategies and ecosystem management practices. The review aligns with the goals of the Arctic Monitoring and Assessment Program (AMAP) and Conservation of Arctic Flora and Fauna (CAFF), providing important insights for policymakers, researchers, and stakeholders working to understand and protect these sensitive ecosystems.

期刊论文 2025-04-07 DOI: 10.3389/fenvs.2025.1544586

Subarctic palsa mires are natural indicators of the status of permafrost in its sporadic distribution zone. Estimation of the rate of their thawing can become an auxiliary indicator to predict climate shifts. The formation, growth, and degradation of palsas are dynamic processes that depend on seasonal weather fluctuations and local environmental factors. Therefore, accurate forecasts of palsas conditions and related ecosystem shifts must be based on a broad set of attributes of palsas from different regions of the Northern Hemisphere. With this in mind, we studied two palsa mires sites on the Kola Peninsula, for which no thorough descriptions were previously available. The first site, Chavanga, is at the southern limit of the permafrost zone under unfavorable climatic conditions and is a collapsing relic. The second site, Ponoy, in contrast, is within the sporadic permafrost zone with relatively cold and dry conditions. Our dataset was created by combining several methods to produce detailed spatial models of permafrost for the studied palsa mires. We used 3D ground-penetrating radar (GPR) survey, UAV-based orthophoto maps, peat thermometry, time-domain reflectometry, and manual sampling. We developed two integrated geospatial models that describe the active layer, the configuration of the palsa frozen core, and its thermal state and identify the zones of the most intense thawing. These observations revealed a significant thermal effect of the groundwater flow and its critical role in the palsas segmentation and rapid collapse. We have investigated a regulating effect of micromorphological features of palsa mounds such as heights, slope, depressions, and mire mineral bed through groundwater drainage. As a result, two new scenarios for the palsa degradation process have been developed, emphasizing the influence of environmental factors on the permafrost condition.

期刊论文 2025-04-06 DOI: 10.1002/ppp.2276 ISSN: 1045-6740

Predicting the impacts of climate change on aquatic ecosystems in the Subarctic is challenging due to the presence of permafrost and the wide range of geomorphologic conditions found across this heterogeneous landscape. To accurately predict how fish and wildlife will be impacted by climate change, it is critical to identify the habitat requirements of important prey such as macroinvertebrates. To better understand spatial heterogeneity in macroinvertebrate populations and identify key habitat requirements, we compared taxonomic richness, relative abundance, and density of macroinvertebrate populations in seven different lake basin types, spanning a large latitudinal and elevational gradient of subarctic Alaska. We used nonparametric statistics and NMDS to relate macroinvertebrate community metrics to landscape characteristics such as sedimentary deposit type, permafrost extent, geomorphology, and lake basin type, as well as chemical conditions within the lakes. Macroinvertebrate richness was highest in areas with continuous permafrost, largely driven by richness in dipterans. Lake water chemistry influenced taxa richness, relative abundance, and densities of both macroinvertebrates and microcrustaceans. Invertebrate densities were greatest in regions (parks) with higher nutrient concentrations and specific conductance, with higher relative abundance of dipterans in older landscape terrains (Yedoma) while a higher relative abundance of microcrustaceans was found in landscapes with little peat accumulation (sand dunes). As climate-driven permafrost thaw continues across the subarctic, shifts in pH, specific conductance, and calcium are likely to occur due to changes in active layer thickness and surface and groundwater flow paths that drive nutrient and solute delivery. Changes in invertebrate relative abundance and density are most likely to occur in ETOC and Diptera, two of the most ecologically important invertebrate groups found in subarctic lakes.

期刊论文 2025-04-01 DOI: 10.1111/fwb.70024 ISSN: 0046-5070

The high latitudes cover similar to 20% of Earth's land surface. This region is facing many shifts in thermal, moisture and vegetation properties, driven by climate warming. Here we leverage remote sensing and climate reanalysis records to improve understanding of changes in ecosystem indicators. We applied non-parametric trend detections and Getis-Ord Gi* spatial hotspot assessments. We found substantial terrestrial warming trends across Siberia, portions of Greenland, Alaska, and western Canada. The same regions showed increases in vapor pressure deficit; changes in precipitation and soil moisture were variable. Vegetation greening and browning were widespread across both continents. Browning of the boreal zone was especially evident in autumn. Multivariate hotspot analysis indicated that Siberian ecoregions have experienced substantial, simultaneous, changes in thermal, moisture and vegetation status. Finally, we found that using regionally-based trends alone, without local assessments, can yield largely incomplete views of high-latitude change.

期刊论文 2025-01-28 DOI: 10.1029/2023GL108081 ISSN: 0094-8276

Continuous permafrost is present across the McMurdo Dry Valleys of southern Victoria Land, Antarctica. While summer active-layer thaw is common in the low-elevation portions of the Dry Valleys, active layers have not significantly thickened over time. However, in some locations, coastal Antarctic permafrost has begun to warm. Here, based on soil and meteorological measurements from 1993 to 2023, we show that wintertime soil temperatures have increased across multiple sites in the Dry Valleys, at rates exceeding the pace of summer soil warming. Linear warming trends over time are significant (P < 0.05) at six of seven soil monitoring sites. Winter warming is strongly correlated with increased numbers of down-valley wind events (Foehn/katabatics), but it may also be driven by increased incident longwave radiation at some stations (although winter longwave increase is not significant over time). While down-valley wind events increase winter warming, when down-valley wind events are excluded from the record, winter soil warming remains persistent and significant, suggesting that Antarctic soils are experiencing less cold winters over time in response to regional warming. Together, these observations suggest that some Antarctic permafrost may be approaching a transition to discontinuous permafrost in some regions as winter freezing intensity is reduced over time.

期刊论文 2025-01-10 DOI: 10.1017/S0954102024000488 ISSN: 0954-1020

The stability of arctic permafrost and the carbon it contains are currently threatened by a rapidly warming climate. Burial Lake, situated in northwestern arctic Alaska, is underlain by continuous permafrost and has a uniquely rich set of paleoclimate proxy data that comprise a 40-ka record of climate and environmental change extending well into Marine Isotope Stage (MIS) 3. Here, we examine the relationship between erosion, subsurface hydrology, and primary productivity from the Burial Lake sediments to improve our understanding of the links between climate, hydrology, sediment transport, and carbon mobility. The record is developed with radiocarbon (14C) age-offsets from two independent methods used to date the lake sediments: 1) 14 C measurements on paired bulk sediment and plant macrofossils from the same stratigraphic layer of lake sediment and 2) ramped pyrolysis- oxidation (RPO) 14 C analysis that separates fractions of organic carbon (OC) from a single bulk sediment sample based on thermochemical differences through continuous heating. As lakes capture and archive OC transported from the watershed, changes in the amount and relative age of permafrost-derived OC mobilized during past climatic variations can be documented by examining how age-offsets change over time. The Burial Lake sediment revealed higher age-offsets during the cold Last Glacial Maximum (LGM; 29-17 ka) than the comparatively warmer post-glacial ( 17 ka-present) and the MIS 3 interstadial ( 40-29 ka) periods. The relatively warm, wet climate of the post-glacial period promoted both terrestrial and aquatic productivity, resulting in increased OC deposition, and it likely favored transport via subsurface flow of dissolved OC (DOC) sourced from soils. This resulted in a greater flux of contemporary OC relative to ancient OC into the lake sediment, lowering the average age offset to 2 ka. In contrast, the low-productivity conditions of the LGM resulted in slow soil accumulation rates, leaving ancient OC in a shallower position in the soil profile and allowing it to be easily eroded in the form of particulate OC (POC). Although the amount of total OC deposited in the lakebed during the LGM is small relative to post-glacial deposition, the majority is ancient, which leads to a relatively high average age offset of 9 ka. Finally, climate and environmental conditions of the MIS 3 interstadial were intermediate between those of the post-glacial and the LGM. As with post-glacial sediments, a relatively large amount of OC is present; however, the vast majority of it is ancient (more similar to the LGM), and it produces an average age offset of 6 ka. The Burial Lake radiocarbon record demonstrates the complexities of the thaw and mobilization of permafrost OC in arctic Alaska, including the balance between production, transport, deposition, remobilization, and preservation. This record highlights the importance of considering factors that both enhance and inhibit erosion (i.e. vegetation cover, lake level, precipitation) and the mechanisms of OC transport (i.e. subsurface flow or erosion) in predictions of future permafrost response to changes in climate.

期刊论文 2025-01-01 DOI: 10.1016/j.quascirev.2024.109083 ISSN: 0277-3791

Increasing greenhouse gas levels drive extensive changes in Arctic and cold-dominated environments, leading to a warmer, more humid, and variable climate. Associated permafrost thaw creates new groundwater flow paths in cold regions that are causing unprecedented environmental changes. This review of recent advances in groundwater research in cold environments has revealed that a new paradigm is emerging where groundwater is at the center of these changes. Groundwater flow and associated heat and solute transport are now used as a basis to understand hydrological changes, permafrost dynamics, water quality, integrity of infrastructure along with ecological impacts. Although major advances have been achieved in cold regions' cryohydrogeological research, the remaining knowledge gaps are numerous. For example, groundwater as a drinking water source is poorly documented despite its social importance. Lateral transport processes for carbon and contaminants are still inadequately understood. Numerical models are improving, but the highly complex physical-ecological changes occurring in the arctic involve coupled thermal, hydrological, hydrogeological, mechanical, and geochemical processes that are difficult to represent and hamper quantitative analysis and limit predictive capacity. Systematic long-term observatories where measurements involving groundwater are considered central are needed to help resolve these research gaps. Innovative transdisciplinary research will be critical to comprehend and predict these complex transformations.

期刊论文 2025-01-01 DOI: 10.1002/ppp.2255 ISSN: 1045-6740
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共413条,42页