共检索到 4

Aerosols influence the development of Atmospheric Boundary Layer (ABL) ensuing aggravated air pollution in megacities. ABL Height (ABLH) and Ventilation coefficient (VC) are key aspects in the pollution study that determines the vertical extent of dispersion of pollutants. To address the intricate, multi-sectoral problem of air pollution, a cogent and considerable approach of evalu-ating the influence of aerosol on ABLH is vital. The data from 2019 -2021 over Delhi, presents quantitative evaluation of radiation effect of aerosol on ABL. The study demonstrates qualita-tively that high aerosol loading lowers the ABLH, consecutively causes further increase in aerosol and PM2.5. Lowering of ABLH subsequently lowers the VC. The influence of aerosol on ABL and radiative forcing (RF) is critiqued with correlation coefficient (R) as-0.17 and -0.37 respec-tively. The cooling effect of the surface is enhanced as Aerosol Optical Depth (AOD) rises, further impeding the development of ABL. Further, through the interdependence between Single Scat-tering Albedo (SSA) and ABLH, it is speculated that the absorbing aerosols (AA) tend to increase the stability, ultimately leading to lower ABLH. Assessing the link between ABL and air pollution is vital not only for preventing and combating aerosol emissions in Delhi, but also for accurate air quality prediction and numerical weather prediction.

期刊论文 2023-05-01 DOI: 10.1016/j.uclim.2023.101478 ISSN: 2212-0955

The present investigation outlines the crucial factors that influence the black carbon (BC) concentrations over a polluted metropolis, Kolkata (22.57 & DEG; N, 88.37 & DEG; E), India. Located in the eastern part of the Indo Gangetic Plain (IGP) outflow region and close to the land-ocean boundary, Kolkata is subject to contrasting seasonal maritime airflow from the Bay of Bengal and continental air mass from the IGP and Tibetan plateau region, which modulates the local concentration of BC. The origin of aerosol transport and associated atmospheric dynamics with high and low BC activities over Kolkata are examined during 2012-2015 using data from multi-technique sources which include measurements of ground-based instruments of aethalometer and multi-frequency microwave radiometer, reanalysis data from ERA-5 and MEERA-2, and model outputs from HYPSLIT back trajectory model simulations. The study highlights the control of IGP wind inflow on the occurrence of anomalous enhancements in BC concentration during weekends and holidays when local emissions are low. High BC events are associated with enhanced atmospheric heating below the boundary layer (2000 m) and significant negative surface radiative forcing. The response of the boundary layer to high and low BC episodes, shown in the diurnal variation in comparison with the seasonal mean, is investigated. Dominant suppression of morning and night-time boundary layer height is observed on high BC days. During the daytime in pre-monsoon, post-monsoon, and winter seasons, boundary layer height peaks are found to be strongly controlled by high BC episode occurrences as obtained from the hourly data of ERA-5.

期刊论文 2023-02-01 DOI: 10.1007/s10661-022-10865-4 ISSN: 0167-6369

The study examines the thermodynamic structure of the marine atmospheric boundary layer (MABL) and its effect on the aerosol dynamics in the Indian Ocean sector of Southern Ocean (ISSO) between 30 degrees S-67 degrees S and 57 degrees E-77 degrees E. It includes observations of aerosols and meteorology collected during the Xth Southern Ocean Expedition conducted in December 2017. The results revealed the effect of frontal-region-specific air-sea coupling on the thermodynamic structure of MABL and its role in regulating aerosols in ISSO. The MABL over the subtropical front was unstable and formed a well-evolved mixed layer ( 2400 m) capped by low-level inversions ( 660 m). Convective activities in the Sub-Antarctic Frontal region were associated with the Agulhas Retroflection Current, which supported the forma-tion of a well-developed mixed layer ( 1860 m). The mean estimates of aerosol optical depth (AOD) and black carbon (BC) mass concentrations were 0.095 +/- 0.006 and 50 +/- 14 ng m-3, respectively, and the resultant clear sky direct shortwave radiative forcing (DARF) and atmospheric heating rate (HR) were 1.32 +/- 0.11 W m-2 and 0.022 +/- 0.002 K day-1, respectively. In the polar front (PF) region, frequent mid-latitude cyclones led to highly stabilized MABL, supported low-level multi-layered clouds (>3-layers) and multiple high-level inversions (strength > 0.5 K m-1 > 3000 m). The clouds were mixed-phased with temperatures less than -12 degrees C at 3000 m altitude. Interestingly, there was higher loading of dust and BC aerosols (276 +/- 24 ng m-3), maximum AOD (0.109 +/- 0.009), clear sky DARF (1.73 +/- 0.02 W m-2), and HR (0.029 +/- 0.005 K day-1). This showed an accumulation of long-range advected anthro-pogenic aerosols within baroclinic-boundaries formed over the PF region. Specifically, in the region south of PF, weak convection caused weakly-unstable MABL with a single low-level inversion followed by no clouds/single-layer clouds. Predominant clean maritime air holding a small fraction of dust and BC accounted for lower estimates of AOD (0.071 +/- 0.004), BC concentrations (90 +/- 55 ng m-3) and associated clear sky DARF and HR were 1.16 +/- 0.06 W m-2 and 0.019 +/- 0.001 K day-1, respectively.

期刊论文 2023-02-01 DOI: 10.1016/j.scitotenv.2022.159770 ISSN: 0048-9697

The atmospheric boundary layer (ABL) is one of the most fundamental yet complex components of the Earth's atmosphere. Hence, studying the ABL has important theoretical value and practical significance. In this paper, the structural characteristics and heating (cooling) rate of the ABL in summer over the Northern Tibetan Plateau (NTP) were analysed using radiosonde observation data from the Amdo and Nagqu regions. The results indicate that the summertime ABL height over the NTP exhibited obvious diurnal variations, with the ABL height during the dry season being greater than that during the rainy season. The maximum convective boundary layer (CBL) height during the daytime reached 3200 m and 2500 m in the dry and rainy seasons, respectively, and the mean maximum CBL height was approximately 2500 m; the maximum stable boundary layer (SBL) height at night reached 900 m, and the mean maximum SBL height was approximately 500 m. The wind speed dominated by westerly wind in the dry season was greater than that dominated by easterly wind in the rainy season, and the zonal (meridional) wind speed (shear) on sunny days was greater than that on cloudy days. The inverse humidity phenomenon occurred in both Amdo and Nagqu, and the strong humidity inversion occurred mainly at midnight on sunny days and at noon on cloudy days. The heating (cooling) rate of the ABL displayed obvious diurnal variations, with the rates being greater on sunny days and lower on cloudy and rainy days. Furthermore, the mean values of the daytime heating rate and nighttime cooling rate of the ABL were relatively equal, indicating that the atmospheric energy budget was, for the most part, balanced.

期刊论文 2020-04-01 DOI: http://dx.doi.org/10.1016/j.atmosres.2022.106045 ISSN: 0169-8095
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页