共检索到 6

This study conducted load-bearing capacity tests to quantitatively analyze the impact of permafrost degradation on the vertical load-bearing capacity of railway bridge pile foundations. Meanwhile, a prediction model vertical load-bearing capacity for pile foundations considering permafrost degradation was developed and validated through these tests. The findings indicate that the permafrost degradation significantly influences both the failure patterns of the pile foundation and the surrounding soil. With the aggravation of permafrost degradation, damage to the pile foundation and the surrounding soil becomes more pronounced. Furthermore, permafrost degradation aggravates, both the vertical ultimate bearing capacity and maximum side friction resistance of pile foundations exhibit a significant downward trend. Under unfrozen soil conditions, the vertical ultimate bearing capacity of pile foundations is reduced to 20.1 % compared to when the permafrost thickness 160 cm, while the maximum side friction resistance drops to 13.2 %. However, permafrost degradation has minimal impact on the maximum end bearing capacity of pile foundations. Nevertheless, as permafrost degradation aggravates, the proportion of the maximum end bearing capacity attributed to pile foundations increases. Moreover, the rebound rate of pile foundations decreases with decreasing permafrost thickness. Finally, the results confirm that the proposed prediction model can demonstrates a satisfactory level of accuracy in forecasting the impact of permafrost degradation on the vertical load-bearing capacity of pile foundations.

期刊论文 2025-08-01 DOI: 10.1016/j.coldregions.2025.104495 ISSN: 0165-232X

This paper investigates the durability and long-term bearing behavior of post-grouted piles in sand. Laboratory tests were conducted on cement-stabilized sand exposed to seawater erosion environments to investigate the effects of curing times and cement ratios on soil strength using micro-cone penetration (MCPT), scanning electron microscopy (SEM), and X-ray diffraction (XRD) tests. The strength distribution, microstructure, and phase composition of cement-stabilized soil were analyzed to determine the characteristics of strength changes. Furthermore, long-term field static load tests were performed on the Yinchuan Beijing Road extension and Binhe Yellow River Bridge project to investigate the relationship between the change in strength of cement-stabilized soil under erosion environments and the time effect of post-grouting at the pile tip. The results indicated that erosion damage to the cement-stabilized soil occurs from shallow to deep as the curing time increases, resulting in a reduction in its strength due to the formation of hydration products and products with poor gelation and low strength. Conversely, an increase in cement ratios resulted in heightened hydration products, which subsequently increased strength and significantly reduced the depth of erosion damage. The change in strength of cement-stabilized soil under seawater erosion environment is a combined result of the strengthening effect of hydration reaction and the weakening effect of erosion reaction. This change is the main reason for the time effect of post-grouting at the pile tip, allowing for effective control of pile foundation settlement with increasing time. The research findings provide valuable insights for evaluating the durability and long-term bearing behavior of post-grouted piles in sand.

期刊论文 2025-05-14 DOI: 10.1007/s11440-025-02629-4 ISSN: 1861-1125

To investigate the effect of combined end-and-shaft post-grouting on the vertical load-bearing performance of bridge-bored piles in the Dongting Lake area of Hunan, two post-grouted piles were subjected to bi-directional O-cell and top-down load tests before and after combined end-and-shaft grouting, based on the Wushi to Yiyang Expressway project. A comparative analysis was conducted on the bearing capacity, deformation characteristics, and load transfer behavior of the piles before and after grouting. This study also examined the conversion coefficient gamma values of different soil layers obtained from the bi-directional O-cell test for bearing capacity calculations. Additionally, the characteristic values of the end bearing capacity, obtained from the bi-directional O-cell and top-down load tests, were compared with the values calculated using the relevant formulas in the current standards, which validated the accuracy of existing regulations and traditional loading methods. The results indicate that the stress distribution along the pile shaft differed between the two test methods. In the bi-directional O-cell test, the side resistance developed from the end to the head, while in the top-down load test, it developed from the head to the end. After combined post-grouting, the ultimate bearing capacity of the piles significantly increased, with side resistance increasing by up to 81.03% and end resistance by up to 105.66%. The conversion coefficients for the side resistance in silty sand and gravel before and after grouting are 0.86 and 0.80 and 0.81 and 0.69, respectively. The characteristic values of the end bearing capacity, as measured by the bi-directional O-cell and top-down load tests, were substantially higher than those calculated using the current highway bridge and culvert standards, showing increases of 133.63% and 86.15%, respectively. These findings suggest that the current standard formulas are overly conservative. Additionally, the measured values from the top-down load test may underestimate the actual bearing capacity of piles in engineering projects. Therefore, it is recommended that future pile foundation designs incorporate both bi-directional O-cell testing and combined post-grouting techniques to optimize design solutions.

期刊论文 2025-01-01 DOI: 10.3390/buildings15020179

The southeastern rock base sea area is the most abundant wind resource area, and it is also the mainstream construction site of offshore wind farms (OWFs) in China. The weathered residual soil is the main seabed component in the rock base area, which is the important bearing stratum of the offshore wind turbine foundation. Previous studies on the mechanical properties of seabed materials and bearing characteristics of the pile foundations in OWFs have mainly focused on the submarine soil-based seabed, resulting in a lack of direct reference for the construction of offshore wind power in the rocky seabed. Therefore, the mechanical properties of weathered residual soil and the bearing behaviors of monopile foundations are mainly investigated in this study. Firstly, dynamic triaxial tests are conducted on the weathered residual soil, and experiments analyze insight into the evolution law of the hysteresis curve, cumulative strain, and stiffness attenuation. Then, the horizontal loading behaviors of monopile foundations in residual soil are analyzed by numerical simulations; more critically, the service performances under wind and wave coupling loads are evaluated, which provide a direct theoretical basis for the construction and design of offshore wind turbine foundations in rock base seabeds.

期刊论文 2024-10-01 DOI: 10.3390/jmse12101785

Cement mortar-expanded precast (CMEP) piles comprise a new class of expansion pile technology. To reveal their vertical bearing properties, full-scale research on the bearing performance of expanded piles under different pile top pressure modes and pre-bored conditions has been carried out. Test results have shown that pile top pressure mode had little effect on the bearing performance of expanded precast piles, but significantly affected internal load transfer mechanism. When internal precast pile was under pressure alone, the axial force of inner precast pile was relatively high. When the full of pile top was loaded, precast pile axial force was reduced by about 20-50%. Furthermore, different pre-bored conditions could cause different pile end support conditions, significantly impacting the performance of expanded pile bearing. The ultimate bearing capacity of expansion piles with super core (SC) pile, equal core (EC) pile and less core (LC) pile were 1200, 880 and 906 kN, respectively. However, all three expanded pile types had about 12% higher bearing capacity than conventional strong composite piles. The failure modes of all test piles under ultimate load were overall subsidence, indicating that the shear capacity of the interface between inner precast pile and outer cement mortar was greater than shear action between outer cement mortar and surrounding soil. When the strength of outer grouting material was greater than 15 MPa, the interface damage of inner precast pile and outer material may not be considered.

期刊论文 2024-02-01 DOI: 10.1007/s40999-023-00882-w ISSN: 1735-0522

Industrial by-products have a broad application prospect in sustainable soft soil treatment. The applicability and characteristics of a cement-slag-phosphogypsum based ternary cement (TC) are investigated for solidifying soft clay to create a crust layer. The strength and load-bearing behaviors of the solidified crust are characterized using unconfined compressive strength (UCS), triaxial compression, and small-scale loading tests. The ascending trends in UCS with increasing binder content (Cb) differ between TC solidified clay and cement solidified clay, and the UCS ratio between them increases with Cb. Besides, the failure strain and secant modulus of TC solidified clay have functional relationships with UCS, and the same functions work for cement solidified clay as well. In triaxial compression tests, the relationship curves of the deviatoric stress and excess pore water pressure with axial strain change to present more significant shear dilation characteristics as Cb rises from 6% to 8%, along with a sharp rise in the friction angle, suggesting the solidification performance improved to a higher level. The results of small-scale loading tests show that the ultimate bearing capacity (pu) increases with Cb and crust thickness (h), along with the potential crust failure mode transiting from punching to bending failure; the pu gets a sharp rise as Cb and h are just raised high enough to ensure the crust integrality. In more details, it is suggested to prioritize the effective solidification critical for stress spreading before enlarging h in order to achieve higher pu. Finally, TC has been applied and proven effective in engineering practice.

期刊论文 2024-01-19 DOI: 10.1016/j.conbuildmat.2023.134744 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页