Black carbon (BC) mixed with non-BC components strongly absorbs visible light and leads to uncertainty in assessing the absorption enhancement (Eabs) and thus radiative forcing. Traditional Single-Particle Soot Photometer (SP2) combined with the leading-edge only fitting (the only-SP2 method) derives BC's mixing states through Mie scattering calculations. However, errors exist in retrieved optical diameter (Dopt) and MR due to the assumption of the ideal spherical core-shell structure and the selection of the calculation parameters like density and refractive index (RI) of the components. Here, we employed a custom-developed tandem CPMA-SP2 system, which classifies fixed-mass BC to characterize the mixing state, then compared with the only-SP2 method in quantifying the mixing state and Eabs. The field measurements show that the SP2 demonstrates variability in assessing the mixing state of BC in different aging states. The thickly-coated particles with small core approaching the internally mixed state are more sensitive to the change of calculated RI. The Dopt decreases with the RI increasing, indicating that this method accurately measures both Dopt and Eabs when a reasonable refractive index is selected for calculation. However, for thinly-coated particles with moderate or large core, this method results in significant deviations in the computed Eabs (errors up to 15 %). These deviations may be caused by the various shapes of BC and systematic errors. Our results provide valuable insights into the accuracy of the SP2-retrieved Dopt and MR based on Mie calculations and highlight the importance of employing advanced techniques for further assessment of BC's mixing state.
The critical role of light-absorbing aerosol black carbon (BC) in modifying the Earth's atmosphere and climate system warrants detailed characterization of its microphysical properties. The present study examines the BC microphysical properties (size distributions and mixing state) and their impact on the light-absorption characteristics over a semi-urban tropical coastal location in Southern Peninsular India. The measurements of refractory BC (rBC) properties, carried out using the single particle soot photometer during 2018-2021, covering four distinct air mass conditions (Marine, Continental, Mixed-1, and Mixed-2), were used for this purpose. These were supported by measurements of non-refractory submicron particulate matter (NR-PM1) mass loadings and the core-shell Mie theory model for BC-containing particles. The results suggested that the BC particles exhibited varying sizes (mass median diameters from 0.181 +/- 0.079 mu m to 0.202 +/- 0.064 mu m) and relative coating thicknesses (RCT) (1.3-1.6) under distinct air mass conditions. These characteristics reflected varying source/sink strengths, aging processes of BC, and potential condensable coating material. The aerosol system during the Marine air mass period has lower BC (similar to 0.67 +/- 0.57 mu g m(-3)) and NR-PM1 (12.06 +/- 10.81 mu g m(-3)) mass concentrations, and the lowest RCT on BC (similar to 1.34 +/- 0.14). However, the other periods with continental influence depicted significant coatings on BC (mean RCT >1.5). The coatings on BC particles exhibited daytime enhancement, driven by photochemically produced condensable material, a contrasting diurnal pattern to that of other BC properties. Interestingly, the RCT on BC increased and/or remained invariant with increasing relative humidity (RH) until RH 85 %), indicating the potential role of secondary organics as coatings. The changes in the BC mixing state resulted in a significant alteration to its light-absorption properties. The mean light-absorption enhancement of BC (compared to uncoated BC) ranged from 1.36 +/- 0.14 for the Marine air mass periods to 1.58 +/- 0.15 for the Continental air mass periods, whereas the overall mass absorption cross-sections of BC varied between 7.91 +/- 0.91 to 9.03 +/- 0.84 m(2)/g at 550 nm. The key implication of this study is that changes to the BC mixing state, caused by multiple underlying processes unique to tropical atmospheric conditions, can lead to a significant enhancement in its light-absorption characteristics, which can lead to a notable increase in the positive radiative forcing of BC.
Carbonaceous aerosols (CA) strongly impact regional and global climate through their light-absorbing and scattering properties, yet their effects remain uncertain in dust-influenced regions. We investigated the optical properties, source contributions, and radiative impacts of CA at two climatically distinct regions in northwestern India: an arid region (AR, Jodhpur; post-monsoon) and a semi-arid region (SAR, Kota; winter). Mean absorption & Aring;ngstr & ouml;m exponent (AAE) values were comparable between the two regions (AR: 1.416 +/- 0.173; SAR: 1.395 +/- 0.069), but temporal cluster analysis revealed source-specific variability, with lower AAE during traffic-dominated periods (similar to 1.30) and elevated AAE during solid fuel and biomass combustion (1.68 in AR and 1.52 in SAR). While equivalent BC (eBC) levels were higher in AR with a relatively uniform liquid-fuel contribution (BClf = 80.06 +/- 1.98 %), the mass absorption cross- of BC (MAC(BC)) in SAR was similar to 4.5X greater, driven by local solid fuel combustion and transported biomass burning emissions (BCsf = 34.61 +/- 6.88 %). Mie modelling indicated higher SSA in AR due to higher contribution of mineral dust, in contrast to SAR, where carbonaceous aerosols caused stronger absorption, forward scattering, and higher imaginary refractive index (k(OBD)). Although absorption enhancement (E-lambda) was slightly higher in AR (similar to 1.11 vs. similar to 0.99), SAR aerosols nearly doubled the warming potential (Delta RFE), with RFE values of similar to 0.87 W/m(2) in SAR versus similar to 0.43 W/m(2) in AR. These findings highlight strong source-specific and site-specific variability in aerosol absorption and radiative, emphasizing the need to integrate region-specific parameters into climate models and air quality assessments for data-scarce arid and semi-arid South Asian environments.
Amid global climate change, freeze-thaw cycles in cold regions have intensified, reducing the stability of infrastructures and significantly increasing the demand for grouting reinforcement. However, the deterioration in the durability of existing grouting materials under the combined effects of freeze-thaw cycles and low temperatures has become a major technical bottleneck restricting their application in cold regions. This paper focuses on polyurethane (PU) grouting materials with foaming and lifting characteristics, systematically reviewing the research progress and technical challenges associated with their engineering applications in cold regions. First, in terms of material composition and preparation, the core components and modified additives are detailed to establish a theoretical foundation for performance regulation. Second, addressing the application requirements in cold regions, standardized testing methods and comprehensive evaluation systems are summarized based on key indicators such as heat release temperature, impermeability, diffusion properties, mechanical strength, and expansion properties. Combined with microstructural characteristics, the deformation behavior and failure mechanisms of PU grouting materials under freeze-thaw cycles and salt-freezing environments are revealed. At the engineering application level, the challenges faced by PU grouting materials in cold regions-such as inhibited low-temperature reactivity and insufficient long-term durability-are highlighted. Finally, considering current research gaps, including the unclear mechanisms of microscopic dynamic evolution and the lack of studies on the combined effects of complex environments, future research directions are proposed. This paper aims to provide theoretical support for the development and application of PU grouting materials in cold-region geotechnical engineering.
To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 degrees C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clayreinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.
To investigate the coupled time effects of root reinforcement and wet-dry deterioration in herbaceous plant-loess composites, as well as their microscopic mechanisms, this study focused on alfalfa root-loess composites at different growth stages cultivated under controlled conditions. The research included measuring root morphological parameters, conducting wet-dry cycling tests, and performing triaxial compression tests and microscopic analyses (CT scanning and nuclear magnetic resonance) on both bare loess and root-loess composites under various wet-dry cycling conditions. By obtaining shear strength parameters and microstructural indices, the study analyzed the temporal evolution of the shear strength and microstructural characteristics of root-loess composites under wet-dry cycling. The findings indicated that the alfalfa root-loess composite effective cohesion was significantly higher than that of the plain soil in the same growth stage. The alfalfa root-loess composite effective cohesion increased during the growth stage in the same dry-wet cycles. The alfalfa root-loess composite effective cohesion in the same growth stage was negatively correlated with the number of dry-wet cycles. The fatigue damage of the soil's microstructure (pore coarsening, cement hydrolysis, and crack development) increased continuously with the number of dry-wet cycles. However, due to the difference in mechanical properties between roots and the soil, the root-soil composite prevented the deterioration of the soil matrix strength by the dry-wet cycles. As the herbaceous plants grow, the time effect observed in the shear strength of the root-soil composite under the action of dry-wet cycles is the result of the interaction and dynamic coordination between the soil-stabilizing function of the herbaceous plant roots and the deterioration caused by drywet cycles.
Uneven displacement of permafrost has become a major concern in cold regions, particularly under repeated freezing-thawing cycles. This issue poses a significant geohazard, jeopardizing the safety of transportation infrastructure. Statistical analyses of thermal penetration suggest that the problem is likely to intensify as water erosion expands, with increasing occurrences of uneven displacement. To tackle the challenges related to mechanical behavior under cyclic loading, the New Geocell Soil System has been implemented to mitigate hydrothermal effects. Assessment results indicate that the New Geocell Soil System is stable and effective, offering advantages in controlling weak zones on connecting slopes and reducing uneven solar radiation. Consequently, the New Geocell Soil System provides valuable insights into the quality of embankments and ensures operational safety by maintaining displacement at an even level below 1.0 mm. The thermal gradient is positive, with displacement below 6 degrees C/m, serving as a framework for understanding the stability of the subgrade. This system also enhances stress and release the sealing phenomenon.
Soil erosion can be effectively controlled through vegetation restoration. Specifically, roots combine with soil to form a root-soil complex, which can effectively enhance soil shear strength and play a crucial role in soil reinforcement. However, the relationship between root mechanical traits and chemical compositions and shear performance and reinforcing capacity of soil is still inadequate. In this study, we determined the root chemical properties, performed root tensile tests and root-soil composite triaxial tests using two plants-one with a fibrous root system (ryegrass, Lolium perenne L.) and the other with a tap root system (alfalfa, Medicago sativa L.)-and calculated the factor of safety (FOS). The results revealed that the relationship between root diameter and tensile strength differed among different root characters. Holocellulose content and cellulose content were the main factors controlling the root tensile strength of ryegrass and alfalfa, respectively. The shear properties of the root-soil complex (cohesion (c) and internal friction angle (phi)) are correlated with soil water content (SWC) and root mass density (RMD). Root traits had a more substantial effect on c than phi, with significant differences in c between ryegrass and alfalfa at 7 % and 11 % SWC. The root-soil complex had an optimum RMD, and the maximum increase rates of c were 80.57 % and 34.4 %, respectively. Along slopes, sliding first occurs at the foot of the slope, thus demanding emphasis on protection and reinforcement. On steep gradients with low SWC, ryegrass strongly contributes to soil reinforcement, whereas alfalfa is more effective on gentle gradients with high SWC. The results provide scientific references for species selection for vegetation restoration in the Loess Plateau and a deeper understanding of the mechanical mechanism of soil reinforcement by roots.
Buried pipelines are essential for the safe and efficient transportation of energy products such as oil, gas, and various chemical fluids. However, these pipelines are highly vulnerable to ground movements caused by geohazards such as seismic faults, landslide, liquefaction-induced lateral spreading, and soil creep, which can result in potential pipeline failures such as leaks or explosions. Response prediction of buried pipelines under such movements is critical for ensuring structural integrity, mitigating environmental risks, and avoiding costly disruptions. As such, this study adopts a Physics-Informed Neural Networks (PINNs) approach, integrated with a transfer learning technique, to predict structural response (e.g., strain) of both unreinforced and reinforced steel pipes subjected to Permanent Ground Displacement (PGD). The PINN method offers a meshless, simulation-free alternative to traditional numerical methods such as Finite Element Method (FEM) and Finite Difference Method (FDM), while eliminating the need for training data, unlike conventional machine learning approaches. The analyses can provide useful information for in-service pipe integrity assessment and reinforcement, if needed. The accuracy of the predicted results is verified against Finite Element (FE) and Finite Difference (FD) methods, showcasing the capability of PINNs in accurately predicting displacement and strain fields in pipelines under geohazard-induced ground movement.