共检索到 1266

Rapid climate change in the Northern Hemisphere cryosphere threatens ancient permafrost carbon. Once thawed, permafrost carbon may migrate to surface waters. However, the magnitude of permafrost carbon processed by northern freshwater remains uncertain. Here, we compiled '1800 radiocarbon data of aquatic dissolved organic carbon (DOC) and particulate organic carbon (POC) in the Arctic and Qinghai -Tibet Plateau (QTP) to explore the fate of permafrost carbon under climate warming over the past 30 years. We showed that the contribution of aged carbon has significantly increased since 2015. Approximately 70 % of DOC and POC was derived from aged carbon for QTP rivers. In Arctic waters, an average of '67 % of POC was derived from aged carbon, however, '75 % of DOC was derived from modern carbon, mainly due to low temperatures and protection by vegetation limiting the export of aged DOC. For both regions, DOC 14 C age was positively correlated with the active layer thickness, whereas the POC 14 C age was positively correlated with the mean annual ground temperature, suggesting that gradual thaw accelerated the mobilization of aged DOC while abrupt thaw facilitated the export of aged POC. Furthermore, POC 14 C age was positively correlated with the soil organic carbon density, which was attributed to well-developed pore networks facilitated aged carbon output. This study suggests that permafrost carbon release is affected by both permafrost thermal properties and soil organic carbon density, which should be considered in evaluation of permafrost carbon -climate feedback.

期刊论文 2026-03-01 DOI: 10.1016/j.jes.2025.06.043 ISSN: 1001-0742

Recent climate warming has accelerated permafrost thaw and dynamics of thermokarst lakes (TLs) on the Tibetan Plateau (TP). Yet, owing to the lack of long-term monitoring of TLs, our understanding of lake evolution processes and their driving factors remains uncertain. Here, using the global surface water product and timeseries Landsat imagery, we identified 58,538 TLs (0.01-3 km2) and determined the primary occurrence year of lake changes from 1990 to 2022. Our results indicated that TLs on the TP are primarily located in the central inland region, over 82 % of lakes experienced area expansion, and only 15 % in the northwest show decrease in area. Annual number of lake expansion peaked in 2016, whereas lake shrinkage was most common in 2019. The calculated lake area errors, field investigations, and validation of lake disturbance time demonstrated high accuracy and consistency. We applied the optimal machine learning regression model to distinguish the different drivers for lake expansion and shrinkage. The topographic and climatic factors are primary drivers for lake expansion, while differences in evaporation trend and soil temperature trend might contribute to lake shrinkage. This study highlights the vulnerability of permafrost on the TP to climate change, which can contribute to carbon sequestration estimation and infrastructure maintenance.

期刊论文 2026-02-01 DOI: 10.1016/j.jag.2025.105022 ISSN: 1569-8432

Understanding long-term interactions between climate, permafrost, and vegetation provides an essential context for interpreting current Arctic greening. Using 65 fossil pollen records from northern Siberia and a Random Forest model trained on a dataset of 835 modern pollen-climate assemblages, we quantitatively reconstructed mean temperature of the warmest month (Mtwa: mean July temperature) anomalies over the past 40 thousand years (ka) and assessed associated vegetation changes. During the Last Glacial Period, herbaceous taxa overwhelmingly dominated, and warming of similar to 1 degrees C during similar to 40-35 cal ka BP was insufficient to deepen the active layer beyond the threshold required for tree establishment, leaving woody cover minimal. In the early Holocene, sustained warming of nearly 2 degrees C triggered permafrost degradation and active-layer thickening, enabling forest expansion, although tree taxa lagged shrubs by several millennia. These results reveal a clear threshold effect in vegetation-permafrost interactions and show that only sustained warming can overcome permafrost constraints. By providing quantitative temperature estimates, our reconstruction offers critical benchmarks for predicting how ongoing Arctic warming may transform vegetation patterns and permafrost stability.

期刊论文 2026-02-01 DOI: 10.1016/j.gloplacha.2025.105237 ISSN: 0921-8181

Accurate soil thermal conductivity (STC) data and their spatiotemporal variability are critical for the accurate simulation of future changes in Arctic permafrost. However, in-situ measured STC data remain scarce in the Arctic permafrost region, and the STC parameterization schemes commonly used in current land surface process models (LSMs) fail to meet the actual needs of accurate simulation of hydrothermal processes in permafrost, leading to considerable errors in the simulation results of Arctic permafrost. This study used the XGBoost method to simulate the spatial-temporal variability of the STC in the upper 5 cm active layer of Arctic permafrost during thawing and freezing periods from 1980 to 2020. The findings indicated STC variations between the thawing and freezing periods across different years, with values ranging from-0.4 to 0.28 W & sdot;m-1 & sdot;K-1. The mean STC during the freezing period was higher than that during the thawing period. Tundra, forest, and barren land exhibited the greatest sensitivity of STC to freeze-thaw transitions. This is the first study to explore the long-term spatiotemporal variations of STC in Arctic permafrost, and these findings and datasets can provide useful support for future research on Arctic permafrost evolution simulations.

期刊论文 2026-02-01 DOI: 10.1016/j.coldregions.2025.104793 ISSN: 0165-232X

Global warming is accelerating the glacier and snow shrinkage in the Tien Shan. This study assesses the impacts of meltwater changes on soil moisture and hydrological processes using VIC-CAS, a glacier-expanded Variable Infiltration Capacity model, refined by improving the glacier-melt algorithm and incorporating a snowmelt pathway-tracking scheme. Projections were conducted across six glacierized basins in the Northern Tien Shan, with model calibration and validation using remote-sensing snow/glacier data and observed streamflow. By the late century (2080-2100), snowmelt runoff will decrease by one-third to two-thirds owing to decreasing snowfall. In the Bayingou River Basin (BRB), comprising large glaciers, glacier retreat is slow, and glacier runoff will increase until the 2060s. In contrast, glacier runoff in the other five basins, having surpassed the glacier runoff tipping points, will decline substantially. Glacier runoff remains the primary driver of annual streamflow variability with the BRB showing little change, while the other basins experience a one-fourth decrease in annual streamflow by the late 21st century. Reduced summer meltwater will exacerbate water scarcity, with summer streamflow declining by over one-third in basins with declining glacier runoff, and by nearly 10 % in the BRB. In mountainous areas above 2000 m, increased evapotranspiration is projected to reduce annual mean soil moisture by 10.5-16.3 % by the late century, with a more substantial decrease of 12.4-20 % during July-September due to reduced snowmelt. Continued glacier and snow shrinkage will intensify hydrological and ecological droughts, posing major challenges for water resource management and ecological protection.

期刊论文 2026-02-01 DOI: 10.1016/j.catena.2025.109734 ISSN: 0341-8162

The thermal coupling between the atmosphere and the subsurface on the Qinghai-Tibetan Plateau (QTP) governs permafrost stability, surface energy balance, and ecosystem processes, yet its spatiotemporal dynamics under accelerated warming are poorly understood. This study quantifies soil-atmosphere thermal coupling ((3) at the critical 0.1 m root-zone depth using in-situ data from 99 sites (1980-2020) and a machine learning framework. Results show significantly weaker coupling in permafrost (PF) zones (mean (3 = 0.42) than in seasonal frost (SF) zones (mean (3 = 0.50), confirming the powerful thermal buffering of permafrost. Critically, we find a widespread trend of weakening coupling (decreasing (3) at 66.7 % of sites, a phenomenon most pronounced in SF zones. Our driver analysis reveals that the spatial patterns of (3 are primarily controlled by surface insulation from summer rainfall and soil moisture. The temporal trends, however, are driven by a complex and counter-intuitive interplay. Paradoxically, rapid atmospheric warming is the strongest driver of a strengthening of coupling, likely due to the loss of insulative snow cover, while trends toward wetter conditions drive a weakening of coupling by enhancing surface insulation. Spatially explicit maps derived from our models pinpoint hotspots of accelerated decoupling in the eastern and southern QTP, while also identifying high-elevation PF regions where coupling is strengthening, signaling a loss of protective insulation and increased vulnerability to degradation. These findings highlight a dynamic and non-uniform response of land-atmosphere interactions to climate change, with profound implications for the QTP's cryosphere, hydrology, and ecosystems.

期刊论文 2026-01-15 DOI: 10.1016/j.agrformet.2025.110925 ISSN: 0168-1923

This study presents the first high-resolution Regional Climate Model 5 (RegCM5) analysis of the unprecedented May-June 2024 heatwave in India, evaluating the role of absorbing aerosols-black carbon (BC) and dust-in amplifying extreme heat. Heatwaves have a severe impact on health, mortality, and agriculture, with absorbing aerosols exacerbating warming. MERRA-2 Aerosol Optical Depth (AOD) anomalies show that BC peaked at +0.027 in May, weakening in June, while dust remained higher (up to +0.36), intensifying over the Indo-Gangetic Plain (IGP) and northwestern India. RegCM5 simulations, validated against India Meteorological Department (IMD) observational data, indicate that these aerosols amplified surface temperature anomalies, with BC-induced warming exceeding +4 degrees C in northern India during May, while dust produced stronger anomalies, surpassing +5 degrees C in the IGP and Rajasthan in June. BC-induced warming was vertically distributed and more pronounced under clear skies, whereas dust-induced warming was surface-concentrated and persisted longer in regions with higher dust concentrations. Both aerosols increased net shortwave radiation (SWR; >300 W m(-2) for BC, similar to 270 W m(-2) for dust) and upward longwave radiation (ULR; >130 W m(-2)), inducing surface energy imbalances. This radiative forcing caused lower-tropospheric warming (up to +3 degrees C at 925 hPa for BC and 850 hPa for dust) and humidity deficits (-0.009 kg/kg), which stabilised the atmosphere, suppressed convection, and delayed monsoon onset. These findings highlight aerosol-radiation interactions as critical drivers of heatwave onset and persistence, emphasizing the need for their integration into regional climate models and early warning systems.

期刊论文 2026-01-15 DOI: 10.1016/j.atmosenv.2025.121673 ISSN: 1352-2310

Infrastructure in northern regions is increasingly threatened by climate change, mainly due to permafrost thaw. Prediction of permafrost stability is essential for assessing the long-term stability of such infrastructure. A key aspect of geotechnical problems subject to climate change is addressing the surface energy balance (SEB). In this study, we evaluated three methodologies for applying surface boundary conditions in longterm thermal geotechnical analyses, including SEB heat flux, n-factors, and machine learning (ML) models by using ERA5-Land climate reanalysis data until 2100. We aimed to determine the most effective approach for accurately predicting ground surface temperatures for climate-resilient design of northern infrastructure. The evaluation results indicated that the ML-based approach outperformed both the SEB heat flux and n-factors methods, demonstrating significantly lower prediction errors. The feasibility of long-term thermal analysis of geotechnical problems using ML-predicted ground surface temperatures was then demonstrated through a permafrost case study in the community of Salluit in northern Canada, for which the thickness of the active layer and talik were calculated under moderate and extreme climate scenarios by the end of the 21st century. Finally, we discussed the application and limitations of surface boundary condition methodologies, such as the limited applicability of the n-factors in long-term analysis and the sensitivity of the SEB heat flux to inputs and thermal imbalance. The findings highlight the importance of selecting suitable boundary condition methodologies in enhancing the reliability of thermal geotechnical analyses in cold regions.

期刊论文 2026-01-15 DOI: 10.1016/j.coldregions.2025.104735 ISSN: 0165-232X

Frozen soils, including seasonally frozen ground and permafrost, are rapidly changing under a warming climate, with cascading effects on water, energy, and carbon cycles. We synthesize recent advances in the physics, observation, and modeling of frozen-soil hydrology, emphasizing freeze-thaw dynamics, infiltration regimes and preferential flow, groundwater-permafrost interactions (including talik development and advective heat), and resulting shifts in streamflow seasonality. Progress in in situ sensing, geophysics, and remote sensing now resolves unfrozen water, freezing fronts, and active-layer dynamics across scales, while land-surface and tracer-aided hydrological models increasingly represent phase change, macropore bypass, and vapor transport. Thaw-induced activation of subsurface pathways alters recharge and baseflow, influences vegetation and biogeochemistry, and modulates greenhouse-gas emissions. Key uncertainties persist in scaling micro-scale processes, parameterizing ice-impeded hydraulics, and representing abrupt thaw and wetland dynamics. We outline a tiered modeling framework, priority observations, and integration of vegetation-hydrology-carbon processes to improve projections of cold-region water resources and climate feedbacks.

期刊论文 2026-01-02 DOI: 10.1029/2024RG000839 ISSN: 8755-1209

Black carbon (BC) is a major short-lived climate pollutant (SLCP) with significant climate and environmentalhealth impacts. This review synthesizes critical advancements in the identification of emerging anthropogenic BC sources, updates to global warming potential (GWP) and global temperature potential (GTP) metrics, technical progress in characterization techniques, improvements in global-regional monitoring networks, emission inventory, and impact assessment methods. Notably, gas flaring, shipping, and urban waste burning have slowly emerged as dominant emission sources, especially in Asia, Eastern Europe, and Arctic regions. The updated GWP over 100 years for BC is estimated at 342 CO2-eq, compared to 658 CO2-eq in IPCC AR5. Recent CMIP6-based Earth System Models (ESMs) have improved attribution of BC's microphysics, identifying a 22 % increase in radiative forcing (RF) over hotspots like East Asia and Sub-Saharan Africa. Despite progress, challenges persist in monitoring network inter-comparability, emission inventory uncertainty, and underrepresentation of BC processes in ESMs. Future efforts could benefit from the integration of satellite data, artificial intelligence (AI)assisted methods, and harmonized protocols to improve BC assessment. Targeted mitigation strategies could avert up to four million premature deaths globally by 2030, albeit at a 17 % additional cost. These findings highlight BC's pivotal roles in near-term climate and sustainability policy.

期刊论文 2026-01-01 DOI: 10.1016/j.rser.2025.116284 ISSN: 1364-0321
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共1266条,127页