Localized Browning in Thermokarst-Dominated Landscapes Reverses Regional Greening Trends Under a Warming Climate in Northeastern Siberia

Arctic vegetation dynamics climate change permafrost degradation NDVI thermokarst lakes random forest northeastern Siberia
["Wang, Ruixin","Wang, Ping","Xu, Li","Liu, Shiqi","Huang, Qiwei"] 2026-01-16 期刊论文
(2)
The response of Arctic vegetation to climate warming exhibits pronounced spatial heterogeneity, driven partly by widespread permafrost degradation. However, the role of thermokarst lake development in mediating vegetation-climate interactions remains poorly understood, particularly across heterogeneous landscapes of northeastern Siberia. This study integrated multi-source remote sensing data (2001-2021) with trend analysis, partial correlation, and a Shapley Additive Explanation (SHAP)-interpreted random forest model to examine the drivers of normalized difference vegetation index (NDVI) variability across five levels of thermokarst lake coverage (none, low, moderate, high, very high) and two vegetation types (forest, tundra). The results show that although greening dominates the region, browning is disproportionately observed in areas with high thermokarst lake coverage (>30%), highlighting the localized reversal of regional greening trends under intensified thermokarst activity. Air temperature was identified as the dominant driver of NDVI change, whereas soil temperature and soil moisture exerted secondary but critical influences, especially in tundra ecosystems with extensive thermokarst lake development. The relative importance of these factors shifted across thermokarst lake coverage gradients, underscoring the modulatory effect of thermokarst processes on vegetation-climate feedbacks. These findings emphasize the necessity of incorporating thermokarst dynamics and landscape heterogeneity into predictive models of Arctic vegetation change, with important implications for understanding cryospheric hydrology and ecosystem responses to ongoing climate warming.
来源平台:REMOTE SENSING