Accurately quantifying the impact of permafrost degradation and soil freeze-thaw cycles on hydrological processes while minimizing the reliance on observational data are challenging issues in hydrological modeling in cold regions. In this study, we developed a modular distributed hydro-thermal coupled hydrological model for cold regions (DHTC) that features a flexible structure. The DHTC model couples heat-water transport processes by employing the conduction-advection heat transport equation and Richard equation considering ice-water phase change. Additionally, the DHTC model integrates the influence of organic matter into the hydrothermal parameterization scheme and includes a subpermafrost module based on the flow duration curve analysis to estimate cold-season streamflow sustained by subpermafrost groundwater. Moreover, we incorporated energy consumption due to ice phase changes to the available energy, enhancing the accuracy of evaporation estimation in cold regions. A comprehensive evaluation of the DHTC model was conducted. At the point scale, the DHTC model accurately replicates daily soil temperature and moisture dynamics at various depths, achieving average R-2 of 0.98 and 0.87, and average RMSE of 0.61degree celsius and 0.03 m(3)m(-3), respectively. At the basin scale, DHTC outperformed (Daily: R-2 = 0.66, RMSE = 0.75 mm; Monthly: R-2 = 0.90, RMSE = 15.7 mm) the GLDAS/FLDAS Noah, GLDAS/VIC, and PML-V2 models in evapotranspiration simulation. The DHTC model also demonstrated reasonable performance in simulating daily (NSE = 0.70, KGE = 0.84), monthly (NSE = 0.86, KGE = 0.90), and multi-year monthly (NSE = 0.97, KGE = 0.93) streamflow in the Source Regions of Yangtze River. DHTC also successfully reproduced the snow depth in basin-averaged time series and spatial distributions (RMSE = 0.86 cm). The DHTC model provides a robust tool for exploring the interactions between permafrost and hydrological processes, and their responses to climate change.
2024-11-01 Web of ScienceClimate warming is causing significant changes in the Arctic, leading to increased temperatures and permafrost instability. The active layer has been shown to be affected by climate change, where warmer ground surface temperatures result in progressive permafrost thaw and a deepening active layer. This study assessed the effects of thermal modeling parameters on permafrost ground response to climate warming using the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and TEMP/W software. We analyzed how variations in depth, water content, and soil type affect predictions of future active layer depths and settlement under various climate scenarios using the soil characteristics along Hudson Bay Railway corridor. The results indicate that, for finegrained soils, the depth of the model is a more significant parameter than for coarse-grained soils. The water content of all soil types is a critical factor in determining the time at which permafrost thaws and the depth at which the active layer is located, as higher water content leads to larger active layer changes and more settlement in most cases. Our findings have important implications for infrastructure and land use management in the Arctic region.
2024-05-01 Web of SciencePermafrost degradation alters the flow rate, direction, and storage capacity of soil moisture, affecting ecohydrological effects and climate systems, and posing a potential threat to natural and human systems. The most widely distributed permafrost regions are coastal, high-latitudes and high-altitudes (mainly by the Qinghai-Tibet Plateau). Past studies have demonstrated that permafrost degradation in these regions lacks sorting out regional driving factors, assessing cascading effects on the hydrological environment and monitoring methods. To address this, we reviewed the historical research situation and major topics of permafrost degradation from 1990 to 2022. We analyzed the spatio-temporal dynamics and driving mechanism of permafrost degradation. Then, we comprehensively discussed the effects of permafrost degradation on the soil physical structure and hydraulic properties, soil microorganisms and local vegetation, soil evapotranspiration and stream runoff, and integrated ecohydrological effects. Permafrost field site data were then collected from existing findings and methods for direct or indirect monitoring of permafrost changes at different scales. These results revealed that the research on the hydrological effects of permafrost change was mainly centered on the soil. In addition, regional environmental factors driving permafrost degradation were inconsistent mainly in coastal regions influenced by sea level, high-latitude regions influenced by lightning and wildfire, and high-altitude regions influenced by topography. Permafrost degradation promoted horizontal and/or vertical hydrological connectivity, threatening the succession of high latitude vegetation communities and the transition from high altitude grassland to desert ecosystems, causing regional water imbalances would mitigate or amplify the ability of integrated ecohydrological benefits to cope with climate warming. The never-monitored permafrost area was 1.55x106 km2, but the limitations of using data for the same period remained a challenging task for soil moisture monitoring. Finally, future research should enhance the observation of driving factors at the monitoring site and combine remote sensing data, model simulations or numerical simulations, and isotope tracers to predict the future degradation state of deep permafrost effectively. It is expected that this review will guide further quantifying the driving mechanisms of permafrost degradation and the resulting cascading effects.
2023-10-01 Web of ScienceThis study diagnoses the impact of projected changes in climate and glacier cover on the hydrology of several natural flowing Bow River headwater basins in the Canadian Rockies: the Bow River at Lake Louise (-420.7 km2), the Pipestone River near Lake Louise (-304.2 km2), the Bow River at Banff (-2192.2 km2) all of which drain the high elevation, snowy, partially glaciated Central Range, and the Elbow River at Calgary (-1191.9 km2), which drains the drier Front Ranges and foothills, using models created using the modular, flexible, physically based Cold Regions Hydrological Modelling platform (CRHM). Hydrological models were constructed and parameterised in CRHM from local research results to include relevant streamflow generation processes for Canadian Rockies headwater basins, such as blowing snow, avalanching, snow interception and sublimation, energy budget snow and glacier melt, infiltration to frozen and unfrozen soils, hillslope sub-surface water redistribution, wetlands, lakes, evapotranspiration, groundwater flow, surface runoff and open channel flow. Surface layer outputs from Weather Research and Forecasting (WRF) model simulations for the current climate and for the late 21st century climate under a business-as-usual scenario, Representative Concentration Pathway 8.5 (RCP8.5) at 4-km resolution, were used to force model simulations to examine the climate change impact. A projected glacier cover under a business-as-usual scenario (RCP8.5) was incorporated to assess the impact of concomitant glacier cover decline. Uncalibrated model simulations for the current climate and glacier coverage showed useful predictions of snow accumulation, snowmelt, and streamflow when compared to surface obser-vations from 2000 to 2015. Under the RCP8.5 climate change scenario, the basins of the Bow River at Banff and Elbow River at Calgary will warm up by 4.7 and 4.5 degrees C respectively and receive 12% to 15% more precipitation annually, with both basins experiencing a greater proportion of precipitation as rainfall. Peak snow accumulation in Bow River Basin will slightly rise by 3 mm, whilst it will drop by 20 mm in Elbow River Basin, and annual snowmelt volume will increase by 43 mm in Bow River Basin but decrease by 55 mm in Elbow River Basin. Snowcovered periods will decline by 37 and 46 days in Bow and Elbow river basins respectively due to sup-pressed snow redistribution by wind and gravity and earlier melt. The shorter snowcovered period and warmer, wetter climate will increase evapotranspiration and glacier melt, if the glaciers were held constant, and decrease sublimation, lake levels, soil moisture and groundwater levels. The hydrological responses of the basins will differ despite similar climate changes because of differing biophysical characteristics, climates and hydrological processes generating runoff. Climate change with concomitant glacier decline is predicted to increase the peak discharge and mean annual water yield by 12.23 m3 s-1 (+11%) and 11% in the higher elevation basins of the Bow River but will decrease the mean annual peak discharge by 3.58 m3 s-1 (-9%) and increase the mean annual water yield by 18% in the lower elevation basin of the Elbow River. This shows complex and compensatory hydrological process responses to climate change with the reduced glacier contribution reducing the impact of higher precipitation in high elevation headwaters and drier soil conditions and lower spring snowpacks reducing peak discharges despite increased precipitation during spring runoff in the Front Range and foothills headwaters under a warmer climate.
2023-05-01 Web of ScienceHydrological conditions in cold regions have been shown to be sensitive to climate change. However, a detailed understanding of how regional climate and basin landscape conditions independently influence the current hydrology and its climate sensitivity is currently lacking. This study, therefore, compares the climate sensitivity of the hydrology of two basins with contrasted landscape and meteorological characteristics typical of eastern Canada: a forested boreal climate basin (Montmorency) versus an agricultural hemiboreal climate basin (Aca-die). The physically based Cold Regions Hydrological Modelling (CRHM) platform was used to simulate the current and future hydrological processes. Both basin landscape and regional climate drove differences in hy-drological sensitivities to climate change. Projected peak SWE were highly sensitive to warming, particularly for milder baseline climate conditions and moderately influenced by differences in landscape conditions. Landscape conditions mediated a wide range of differing hydrological processes and streamflow responses to climate change. The effective precipitation was more sensitive to warming in the forested basin than in the agricultural one, due to reductions in forest canopy interception losses with warming. Under present climate, precipitation and discharge were found to be more synchronized in the greater relief and slopes of the forested basin, whereas under climate change, they are more synchronized in the agricultural basin due to reduced infiltration and storage capacities. Flow through and over agricultural soils translated the increase in water availability under a warmer and wetter climate into higher peak discharges, whereas the porous forest soils dampened the response of peak discharge to increased available water. These findings help diagnose the mechanisms controlling hy-drological response to climate change in cold regions forested and agricultural basins.
2022-12-01 Web of ScienceIn cold regions, climate change is expected to result in warmer winter temperatures and increased temperature variability. Coupled with changing precipitation regimes, these changes can decrease soil insulation by reducing snow cover, exposing soils to colder temperatures and more frequent and extensive soil freezing and thawing. Freeze-thaw events can exert an important control over winter soil processes and the cycling of nitrogen (N), with consequences for soil health, nitrous oxide (N2O) emissions, and nearby water quality. These impacts are especially important for agricultural soils and practices in cold regions. We conducted a lysimeter experiment to assess the effects of winter pulsed warming, soil texture, and snow cover on N cycling in agricultural soils. We monitored the subsurface soil temperature, moisture, and porewater geochemistry together with air temperature, precipitation, and N2O fluxes in four agricultural field-controlled lysimeter systems (surface area of 1 m(2) and depth of 1.5 m) at the University of Guelph's Elora Research Station over one winter (December 2020 to April 2021). The lysimeters featured two soil types (loamy sand and silt loam) which were managed under a corn-soybean-wheat rotation with cover crops. Additionally, ceramic infrared heaters located above two of the lysimeters were turned on after each snowfall event to melt the snow and then turned off to mimic snow-free winter conditions with increased soil freezing. Porewater samples collected from five depths in the lysimeters were analyzed for total dissolved nitrogen (TDN), nitrate (NO3 (-)), nitrite (NO2 (-)), and ammonium (NH4 (+)). N2O fluxes were measured using automated soil gas chambers installed on each lysimeter. The results from the snow removed lysimeters were compared to those of lysimeters without heaters (with snow). As expected, the removal of the insulating snow cover resulted in more intense soil freeze-thaw events, causing increased dissolved N loss from the lysimeter systems as N2O (from the silt loam system) and via NO3 (-) leaching (from the loamy sand system). In the silt loam lysimeter, we attribute the freeze thaw-enhanced N2O fluxes to de novo processes rather than gas build up and release. In the loamy sand lysimeter, we attribute the increased NO3 (-) leaching to the larger pore size and therefore lower water retention capacity of this soil type. Overall, our study illustrates the important role of winter snow cover dynamics and soil freezing in modulating the coupled responses of soil moisture, temperature, and N cycling.
2022-10-12 Web of ScienceAffected by global warming, permafrost thawing in Northeast China promotes issues including highway subgrade instability and settlement. The traditional design concept based on protecting permafrost is unsuitable for regional highway construction. Based on the design concept of allowing permafrost thawing and the thermodynamic characteristics of a block-stone layer structure, a new subgrade structure using a large block-stone layer to replace the permafrost layer in a foundation is proposed and has successfully been practiced in the Walagan-Xilinji of the Beijing-Mohe Highway to reduce subgrade settlement. To compare and study the improvement in the new structure on the subgrade stability, a coupling model of liquid water, vapor, heat and deformation is proposed to simulate the hydrothermal variation and deformation mechanism of different structures within 20 years of highway completion. The results show that the proposed block-stone structure can effectively reduce the permafrost degradation rate and liquid water content in the active layer to improve subgrade deformation. During the freezing period, when the water in the active layer under the subgrade slope and natural ground surface refreezes, two types of freezing forms, scattered ice crystals and continuous ice lenses, will form, which have different retardation coefficients for hydrothermal migration. These forms are discussed separately, and the subgrade deformation is corrected. From 2019 to 2039, the maximum cumulative settlement and the maximum transverse deformation of the replacement block-stone, breccia and gravel subgrades are -0.211 cm and +0.111 cm, -23.467 cm and -1.209 cm, and -33.793 cm and -2.207 cm, respectively. The replacement block-stone subgrade structure can not only reduce the cumulative settlement and frost heave but also reduce the transverse deformation and longitudinal cracks to effectively improve subgrade stability. However, both the vertical deformation and transverse deformation of the other two subgrades are too large, and the embankment fill layer will undergo transverse deformation in the opposite direction, which will cause sliding failure to the subgrades. Therefore, these two subgrade structures cannot be used in permafrost regions. The research results provide a reference for solving the settlement and deformation problems of subgrades in degraded permafrost regions and contribute to the development and application of complex numerical models related to water, heat and deformation in cold regions.
2022-09-01 Web of ScienceThe impacts of ongoing climate warming on cold-regions hydrogeology and groundwater resources have created a need to develop groundwater models adapted to these environments. Although permafrost is considered relatively impermeable to groundwater flow, permafrost thaw may result in potential increases in surface water infiltration, groundwater recharge, and hydrogeologic connectivity that can impact northern water resources. To account for these feedbacks, groundwater models that include the dynamic effects of freezing and thawing on ground properties and thermal regimes have been recently developed. However, these models are more complex than traditional hydrogeology numerical models due to the inclusion of nonlinear freeze-thaw processes and complex thermal boundary conditions. As such, their use to date has been limited to a small community of modeling experts. This article aims to provide guidelines and tips on cold-regions groundwater modeling for those with previous modeling experience. This article is categorized under: Engineering Water > Methods Science of Water > Hydrological Processes
2020-11-01 Web of ScienceThis review article deals with bank erosion from the perspective of rivers affected by seasonal ice formation. These rivers drain half of the terrestrial land surface globally, and are mainly located in both periglacial and cold, non-periglacial environments across the Northern Hemisphere. This review is based on a literature survey of 126 publications (articles, technical reports, conference papers and book chapters) documenting case studies in temperate and polar climates. The first details the global issues of bank erosion and pinpoints concerns specific to northern environments. The second describes the dominant erosion processes (fluvial vs. terrestrial), mechanisms (mechanical vs. thermal) and typical landforms encountered in the literature. The third reviews the environmental factors (hydraulic vs. non-hydraulic) controlling bank erosion, with a focus on the different forms of river ice. The fourth deals with the spatial and temporal variability in bank-erosion processes, discussing the distribution of process dominance occurring at the reach scale and the catchment scale, and describing the temporal window in which each process dominates. The fifth reviews the expected impacts on bank erosion resulting from climate-induced disturbances on hydrological cycles and from increasing anthropogenic pressures along riverbanks in northern countries. The relationships among erosion processes, environmental factors, climate change, and human impacts are summarized in a sixth that introduces a new synthetic conceptual diagram of bank erosion. Research needs that should be investigated in the future are highlighted in the seventh while the final synthesizes all the aspects presented in this review.
2020-08-01 Web of SciencePermafrost hydrology is an emerging discipline, attracting increasing attention as the Arctic region is undergoing rapid change. However, the research domain of this discipline had never been explicitly formulated. Both 'permafrost' and 'hydrology' yield differing meanings across languages and scientific domains; hence, 'permafrost hydrology' serves as an example of cognitive linguistic relativity. From this point of view, the English and Russian usages of this term are explained. The differing views of permafrost as either an ecosystem class or a geographical region, and hydrology as a discipline concerned with either landscapes or generic water bodies, maintain a language-specific touch of the research in this field. Responding to a current lack of a unified approach, we propose a universal process-based definition of permafrost hydrology, based on a specific process assemblage, specific to permafrost regions and including: (1) Unconfined groundwater surface dynamics related to the active layer development; (2) water migration in the soil matrix, driven by phase transitions in the freezing active layer; and (3) transient water storage in both surface and subsurface compartments, redistributing runoff on various time scales. This definition fills the gap in existing scientific vocabulary. Other definitions from the field are revisited and discussed. The future of permafrost hydrology research is discussed, where the most important results would emerge at the interface between permafrost hydrology, periglacial geomorphology, and geocryology.
2020-03-01 Web of Science