Background: Herbicides are chemical agents that promote plant and crop growth by killing weeds and other pests. However, unconsumed and excessively used herbicides may enter groundwater and agricultural areas, damaging water, air, and soil resources. Mesotrione (MT) is an extensively used herbicide to cultivate corn, sugarcane, and vegetables. Excessive consumption of MT residues pollutes the soil, water, and environmental systems. Methods: Henceforth, the potential electrocatalyst of the tungsten trioxide nanorods on the carbon microsphere (WO3/C) composite was synthesized for nanomolar electrocatalytic detection of MT. The electrocatalysts of WO3/C were synthesized hydrothermally, and the WO3/C composite was in-situ constructed by using the reflux method. Significant findings: Remarkably, the as-prepared WO3/C composite displayed a fantastic sensing platform for MT, characterized by an astonishingly nanomolar detection limit (10 nm), notable sensitivity (1.284 mu A mu M-1 cm-2), exceptional selectivity, and amazing stability. The actual sample test was carried out using MT added in food and environmental samples of corn, sugar cane, sewage water, and river water. The minimum MT response recovery in vegetable and water samples was determined to be approximately 97 % and 99 %, respectively. The results indicate that the WO3/C composite is an effective electrode material for real-time MT measurement in portable devices.
Buried pipes are subjected to static and dynamic loads depending on their areas of use. To mitigate the risk of damage caused by these effects, various materials and reinforcement methods are utilized. In this study, five buried uPVC pipes designed in accordance with ASTM D2321 standards were reinforced with three different ground improvement materials: Geocell, Geonet, and Geocomposite, and experimentally subjected to dynamic impact loading. Acceleration, velocity, and displacement values were obtained from the experiments. Subsequently, finite element analysis (FEA) was performed using the ABAQUS software to determine stress values and volumetric displacements in the pipes, and the model was validated with a 5-7% error margin. In the final stage of the study, a parametric analysis was conducted by modifying the soil cover height above the pipe and the Geocell thickness in the validated finite element model. The parametric study revealed that the displacement value in the pipe decreased by 78% with an increase in soil cover height, while a 16% reduction was observed with an increase in Geocell thickness. The results demonstrate that the soil improvement techniques examined in this study provide an effective solution for enhancing the impact resistance of buried pipeline systems.
This investigation examines the development of titanium slag-flue gas desulfurized gypsum-Portland cement ternary composites (the ternary composites) for the solidification and stabilization of Pb-contaminated soils. The efficacy of the ternary composites is systematically evaluated using a combination of experimental methodologies, including mechanical properties such as unconfined compressive strength, stress-strain behavior and elastic modulus, leaching toxicity, XRD, TG-DTG, FTIR, XPS, and SEM-EDS analyses. The results indicate that the mechanical properties of Portland cement solidified Pb-contaminated soils are inferior to those of Portland cement solidified Pb-free soil, both in the early and later stages. However, the mechanical properties of Pbcontaminated soils solidified by the ternary composites are superior to those of the ternary composites solidified Pb-free soils in the early stage but somewhat inferior in the later stage. The ternary composites significantly decrease the leached Pb concentrations of solidified Pb-contaminated soils, which somewhat increase with the Pb content and with the pH value decrease of the leaching agent. Moreover, with much lower carbon emissions index and strength normalized cost, the ternary composites have comparable stabilization effects on Pbcontaminated soils to Portland cement, suggesting that the ternary composites can serve as a viable alternative for the effective treatment of Pb-contaminated soils. Characterization via TG-DTG and XRD reveals that the primary hydration products of the ternary composite solidified Pb-contaminated soils include gypsum, ettringite, and calcite. Furthermore, FTIR, XPS and SEM-EDS analyses demonstrate that Pb ions are effectively adsorbed onto these hydration products and soil particles.
This study developed a novel geopolymer (RM-SGP) using industrial solid wastes red mud and slag activated by sodium silicate, aiming to remediate composite heavy metal contaminated soil. The effects of aluminosilicate component dosage, alkali equivalent, and heavy metal concentration on the unconfined compressive strength (UCS), toxicity leaching characteristics, resistivity, pH, and electrical conductivity (EC) of RM-SGP solidified composite heavy metal contaminated soil were systematically investigated. Additionally, the chemical composition and microstructural characteristics of solidified soil were analyzed using XRD, FTIR, SEM, and NMR tests to elucidate the solidification mechanisms. The results demonstrated that RM-SGP exhibited excellent solidification efficacy for composite heavy metal contaminated soil. Optimal performance occurred at 15 % aluminosilicate component dosage and 16 % alkali equivalent, achieving UCS >350 kPa and compliant heavy metal leaching (excluding Cd in high-concentration groups). Acid/alkaline leaching tests revealed distinct metal behaviors: Cu/Cd decreased progressively, while Pb initially declined then rebounded. Microstructural analysis indicated that RM-SGP generated abundant hydration products (e.g., C-A-S-H, N-A-S-H gels), which acted as cementitious substances wrapping soil particles and filling and connecting pores, thereby increasing the soil's compactness and improving the solidification effect. Furthermore, heavy metal ions were solidified through adsorption, encapsulation, precipitation, ion exchange, and covalent bond et al., transforming their active states into less bioavailable forms, proving novel insights into the remediation of composite heavy metal contaminated soils and the resource utilization of industrial solid wastes.
Waste red layers have the potential to be used as supplementary cementitious materials after calcination, but frequent and long-term dry-wet cycling leads to deterioration of their properties, limiting their large-scale application. In this study, the feasibility of using calcined red layers as cement replacement materials under dry-wet cycling conditions was analyzed. The damage evolution and performance degradation of calcined red layer-cement composites (RCC) were systematically evaluated via the digital image correlation (DIC) technique, scanning electron microscopy (SEM) analysis and damage evolution mode. The results show that the calcined red layer replacement ratio and number of dry-wet cycles affect the hydration and pozzolanic reactions of the materials and subsequently affect their mechanical properties. Based on the experimental data, a multiple regression model was developed to quantify the combined effects of the number of dry-wet cycles and the replacement ratio of the calcined red layer on the uniaxial compressive strength. As the number of dry-wet cycles increases, microcracks propagate, the porosity increases, and damage accumulation intensifies. In particular, at a high substitution ratio, the material properties deteriorate further. The global strain evolution process of a material can be accurately tracked via DIC technology. The damage degree index is defined based on strain distribution law, and a damage evolution model was constructed. At lower dry-wet cycles, the hydration reaction has a compensatory effect on damage. The pozzolanic reaction of the calcined red layer resulted in an increase in the number of dry-wet cycles. The RCC samples with high replacement ratios show significant damage accumulation with fast damage growth rates at lower stress levels. The model reveals the nonlinear effects of dry-wet cycling and the calcined red layer replacement ratio on damage accumulation in RCC. The study findings establish a scientific foundation for the resource utilization of abandoned red layers and serve as a significant reference for the durability design of materials in practical engineering applications.
In this paper, through extensive on-site research of the plain concrete composite foundation for the Jiuma Expressway, the study conducted proportional scaling tests. This study focused on the temperature, moisture, pile-soil stress, and deformation of this foundation under freeze-thaw conditions. The findings indicate that the temperature of the plain concrete pile composite foundation fluctuates sinusoidally with atmospheric temperature changes. As the depth increases, both temperature and lag time increase, while the fluctuation range decreases. Furthermore, the effect of atmospheric temperature on the shoulder and slope foot is more significant than on the interior of the road. During the freeze-thaw cycle, the water content and pore-water pressure in the foundation fluctuate periodically. The pile-soil stress fluctuates periodically with the freeze-thaw cycle, with the shoulder position exhibiting the most significant changes. Finally, the road displays pronounced freeze-thaw deformations at the side ditch and slope toe. This study provides a valuable basis for the construction of highway projects in cold regions.
Stinging nettle (Urtica dioica L.) has been observed to grow spontaneously on metal-contaminated soils marginalised by heavy industrial use, thereby presenting an opportunity for the economic utilisation of such lands. This study explores the potential of nettle as a fibre crop by producing short fibre-reinforced polylactic acid (PLA) composites through compounding and injection moulding. Whole stem segments from three nettle clones (B13, L18, and Roville), along with separated fibre bundles from the L18 clone, were processed. The fibre bundles were separated using a roller breaker unit and a hammer mill. From separation with the hammer mill, not only cleaned fibre bundles but also the uncleaned fibre-shive mixture and the undersieve fraction were processed. The Young's modulus of all composites exceeded that of unreinforced PLA, with mean values ranging from 5.7 to 8.1 GPa. However, the tensile strength of most composites was lower than that of pure PLA, except for the two composites reinforced with cleaned fibre bundles. Of these two, the reinforcement with fibre bundles from separation with the hammer mill led to superior mechanical properties, with a higher Young's modulus (8.1 GPa) and tensile strength (61.8 MPa) compared to those separated using the breaking unit (7.2 GPa and 55.9 MPa). This enhancement is hypothesised to result from reduced fibre damage and lower fibre bundle thickness. The findings suggest that nettle cultivation on marginal lands could be a viable option for producing short-fibre composites, thereby offering a sustainable use of these otherwise underutilised areas.
The large-scale development of urban underground spaces has resulted in hundreds of millions of cubic meters of accumulated shield soil dreg waste, occupying huge amounts of land resources and potentially causing groundwater pollution and soil salinization. In this study, shield soil dreg waste is recycled and activated to substitute cement in ultra-high performance concrete, aiming to promote solid waste management and sustainable construction. The slump, mechanical performance, and autogenous shrinkage of the concrete are investigated through macro-scale tests, and the underlying mechanism is revealed via micro-scale experiments. The incorporation of calcined shield soil dreg reduces flowability and leads to a 10.2 % deterioration in compressive strength of the ultra-high performance concrete while mitigating autogenous shrinkage. The primary reason is due to the low CaO content of shield soil dreg, which limits the formation of calcium silicate hydrate, and its high SiO2/Al2O3 content slows hydration kinetics. The environmental and economic benefits of the concrete are determined via life cycle analysis. Recycling shield soil dreg waste into concrete results in about 35 % reduction in carbon emission and 22 % reduction in energy consumption. According to multi-criteria assessment, the overall performance of the concrete considering economic cost, environmental benefit, as well as physical and mechanical properties increases compared to the pristine concrete, achieving well-balanced economic feasibility, environmental sustainability, and engineering performance. The findings of this study provide an effective approach for recycling shield soil dreg and preparing low-carbon concrete, thus promoting solid waste management and sustainable construction.
Tobacco is one of China's key economic crops, known for its wide distribution, high yield, and renewability. Tobacco stalk fibers (TSFs) share a similar chemical composition to wood fibers, making them a potential reinforcement for plant fiber composites. However, the waste tobacco stalk fibers raw material utilization rate is very low, and wasteful phenomenon is very serious. In this study, we prepared biodegradable TSF/PBAT composites using waste tobacco stalk fibers and polybutylene adipate-co-terephthalate (PBAT) through melt blending and injection molding techniques. The effects of different modifiers on the performance of the composites were systematically investigated, with a particular focus on their influence on the degradation behavior. The results showed that the waste tobacco straw fiber can be used as a reinforcing fiber for PBAT. The addition of modifiers significantly improved the mechanical properties of the composites and effectively slowed down the degradation rate in the soil environment. Among the modifiers, the combined use of maleic anhydride (MA) and hydroxylated multi-walled carbon nanotubes (OM) produced the best results, with the tensile strength and flexural strength of the composite reaching 17.3 MPa and 28.0 MPa, respectively-representing increases of 74.7% and 57.3% compared to the untreated composite. After 16 weeks of soil degradation, the mass loss rate of the MA/OM-modified composite decreased from 10.50 to 6.34%. This study provides a comprehensive exploration of the entire lifecycle of TSF-reinforced PBAT composites and offers important theoretical support for the resource utilization and value-added application of waste tobacco stalks in the field of green composite materials.
Roots can mechanically reinforce soils against landslides, but the impact of their typically random and complex distribution on this reinforcement is not well understood. Here, using a modelling approach based on homogenization theory, we aim to assess the effect of the randomness and complexity of root spatial distribution in soils on the mechanical properties of the soil-root composite and the resulting reinforcement. To do this, we modeled the soil-root composite as a three-dimensional (3D) soil column through which parallel roots penetrate vertically. The unit cell (UC) of the soil-root composites with a nonuniform root distribution was created based on the characteristics of root diameter distributions of Elymus dahuricus measured in the field, and the equivalent elastic modulus and strength parameters of the composites were calculated. The accuracy of the homogenization method was verified by direct shear tests with undisturbed soil-root samples. The results showed that the UC model of the soil-root composites could effectively predict its equivalent elastic parameters. A parametric analysis using the proposed homogenization model showed that roots can mobilize significant soil portions to resist deformation by increasing both the number and complexity of root distributions, even at the same root volume ratio. This makes the stress distribution in the soil more uniform and improves the shear strength of the soil-root composites. The presence of Elymus dahuricus roots significantly improved the shear strength of the soil-root composites, primarily due to an increase in cohesion of 23%. This study presents a new perspective on the development of a constitutive model for soil-root composites and highlights its potential value for engineering applications that use roots to reinforce soils.