This study investigated how soil properties affect levee erosion and foundation scouring by evaluating the behavior of loose and cohesive (mixed) soils beneath a rigid crest under overflow conditions and analyzing flow dynamics within the scoured hole to understand the scouring mechanism. Four cases were examined with varying overtopping depths (Od): LS-FS, LS-FM, and LM-FS, at Od = 2 cm, and LS-FM at Od = 3 cm, where 'L' stands for levee, 'F' for foundation, 'S' for sand (#8), and 'M' for mixed soil (20% silt + 80% sand #8). The results revealed distinct differences among the cases. Notably, erosion of the back slope in the LM-FS case was delayed fourfold compared to LS-FS. In the LS-FM case, breaching of the levee body was delayed by 1.6 times compared to the LS-FS case with a 2 cm overtopping depth. Moreover, different scour hole geometries with complex flow patterns occurred in different timespans. Particle image velocimetry (PIV) was utilized on two physical scoured hole models to analyze the flow behavior within these scoured holes. The PIV analysis revealed the formation of twin eddies, moving in opposite directions and shaped by the nappe flow jet, which was instrumental in the development of the scour holes. This study found that foundation cohesion is more essential than the levee body in delaying levee breaches under rigid crest. Additionally, it revealed the role of twin eddies, especially the levee-side eddy, in increasing the size of the scoured hole upstream and causing levee breaches.
Arbuscular mycorrhizal (AM) fungi are important plant symbionts that provide plants with nutrients and water as well as support plant defences against pests and disease. Consequently, they present a promising alternative to using environmentally damaging and costly fertilisers and pesticides in agricultural systems. However, our limited understanding of how agricultural practices impact AM fungal diversity and functions is a key impediment to using them effectively in agriculture. We assessed how organic and conventional agricultural management systems shaped AM fungal communities. We also investigated how AM fungal communities derived from these agricultural management systems affected crop biomass and development. Six soil samples from five organically and five conventionally managed agricultural sites were used to cultivate Sorghum bicolor. Plant growth, plant nutrient concentrations and AM fungal colonisation rates were analysed alongside DNA metabarcoding of community composition. We observed that soil from conventional agricultural fields resulted in a pronounced reduction in sorghum biomass (-53.6%) and a significant delay in flowering compared to plants grown without AM fungi. Sorghum biomass was also reduced with soil from the organic system, but to a lesser extent (-30%) and without a delay in flowering. Organic systems were associated with a large proportion of AM fungal taxa (50.5% of VTs) not found in conventional systems, including Diversispora (r(2) = 0.09, p < 0.001), Archaeospora (r(2) = 0.07, p < 0.001) and Glomus (r(2) = 0.25, p < 0.001) spp., but also shared a large proportion of taxa with conventional systems (42.3% of VTs). Conventional systems had relatively few unique taxa (7.2% of VTs). Our results suggest that conventional agricultural practices selected against AM fungi that were, in this context, more beneficial for host plants. In contrast, organic management practices mitigate this negative effect, likely due to the presence of specific key AM fungal taxa. However, this mitigation is only partial, as less beneficial AM fungal taxa still persist, probably due to abiotic factors associated with agricultural management and the sensitivity of AM fungi to these factors. This persistence explains why the effect is not entirely eradicated. Read the free Plain Language Summary for this article on the Journal blog.
Ongoing climate warming and increased human activities have led to significant permafrost degradation on the Qinghai-Tibet Plateau (QTP). Mapping the distribution of active layer thickness (ALT) can provide essential information for understanding this degradation. Over the past decade, InSAR (Interferometric synthetic aperture radar) technology has been utilized to estimate ALT based on remotely-sensed surface deformation information. However, these methods are generally limited by their ability to accurate extract seasonal deformation and model subsurface water content of active layer. In this paper, an ALT inversion method considering both seasonal deformation from InSAR and smoothly multilayer soil moisture from ERA5 is proposed. Firstly, we introduce a ground seasonal deformation extraction model combining RobustSTL and InSAR, and the deformation extraction accuracy by considering the deformation characteristics of permafrost are evaluated, proving the effectiveness of RobustSTL in extracting seasonal deformation of permafrost. Then, using ERA5 soil moisture products, a smoothed multilayer soil moisture model for ALT inversion is established. Finally, integrating the seasonal deformation and multilayer soil moisture, the ALT can be estimated. The proposed model is applied to the Yellow River source region (YRSR) with Sentinel-1A images acquired from 2017 to 2021, and the ALT retrieval accuracy is validated with measured data. Experimental results show that the vertical deformation rate of the study area generally ranges from -30 mm/year to 20 mm/year, with seasonal deformation amplitude ranging from 2 mm to 30 mm. The RobustSTL method has the highest accuracy in extracting seasonal deformation of permafrost, with an RMSE (root mean square error) of 0.69 mm, and is capable of capturing the freeze-thaw characteristics of the active layer. The estimated ALT of the YRSR ranges from 49 cm to 450 cm, with an average value of 145 cm. Compared to the measured data, the proposed method has an average error of 37.5 cm, which represents a 21 % improvement in accuracy over existing methods.
Accurate structural health monitoring (SHM) is crucial for ensuring safety and preventing catastrophic failures. However, conventional parameter identification methods often assume a fixed-base foundation, neglecting the significant influence of soil-structure interaction (SSI) on the dynamic response, leading to inaccurate damage assessments, especially under seismic loading. Therefore, we introduce a novel approach that explicitly incorporates SSI effects into parameter identification for frame structures, utilizing an optimized variational mode decomposition (VMD) technique. The core innovation is the application of the Subtraction Average-Based Optimizer (SABO) algorithm, coupled with permutation entropy as the fitness function, to optimize the critical VMD parameters. This SABO-VMD method was rigorously validated through a shaking table test on a 12-story frame structure on soft soil. Comparative analysis with EMD and conventional VMD demonstrated that SABO-VMD provides a superior time-frequency representation of the structural response, capturing non-stationary characteristics more effectively. A novel energy entropy index, derived from the SABO-VMD output with SSI, was developed for quantitative damage assessment. It revealed 8.1% lower degree of structural damage compared to the fixed-base assumption. The proposed SABO-VMD-based approach, by explicitly accounting for SSI, offers a substantial advancement in SHM of frame structures, leading to more reliable safety evaluations and improved seismic resilience.
The seismic effects of complex, deep, and inhomogeneous sites constitute a significant research topic. Utilizing geological borehole data from the Suzhou urban area, a refined 2D finite element model with nonuniform meshes of a stratigraphic crossing the Suzhou region was established. Within the ABAQUS/explicit framework, the spatial inhomogeneity of soils, including the spatial variation of S-wave velocity structures, was considered in detail. The nonlinear and hysteretic stress-strain relationship of soil was characterized using a non-Masing constitutive model. Ricker wavelets with varying peak times, peak frequencies (fp), and amplitudes were selected as input bedrock motions. The analysis revealed the spatial distribution characteristics of 2D nonlinear seismic effects on the surface of deep and complex sedimentary layers. The surface peak ground acceleration (PGA) amplification coefficients initially increased and then decreased as fp increases. The surface PGA amplification was most pronounced when the fp is close to the site fundamental frequency. Additionally, when fp = 0.1 Hz, the surface PGA amplification was found to depend solely on the level of bedrock seismic shaking, with amplification factors ranging from 1.20 to 1.40. Furthermore, the ensemble empirical mode decomposition components of seismic site responses can intuitively reveal the variations in time-frequency and time-energy characteristics of Ricker wavelets as they propagate upward from bedrock to surface.
The Arctic experiences rapid climate change, but our ability to predict how this will influence plant communities is hampered by a lack of data on the extent to which different species are associated with particular environmental conditions, how these conditions are interlinked, and how they will change in coming years. Increasing temperatures may negatively affect plants associated with cold areas due to increased competition with warm-adapted species, but less so if local temperature variability is larger than the expected increase. Here we studied the potential drivers of vegetation composition and species richness along coast to inland and altitudinal gradients by the Nuuk fjord in western Greenland using hierarchical modelling of species communities (HMSC) and linear mixed models. Community composition was more strongly associated with random variability at intermediate spatial scales (among plot groups 500 m apart) than with large-scale variability in summer temperature, altitude or soil moisture, and the variation in community composition along the fjord was small. Species richness was related to plant cover, altitude and slope steepness, which explained 42% of the variation, but not to summer temperature. Jointly, this suggests that the direct effect of climate change will be weak, and that many species are associated with microhabitat variability. However, species richness peaked at intermediate cover, suggesting that an increase in plant cover under warming climatic conditions may lead to decreasing plant diversity.
Excessive bromine, iodine and dyes can damage soil structure and aquatic ecosystems. Therefore, capturing toxic bromine, iodine and dyes from nuclear fuel waste and organic waste liquid is crucial for protecting the environment and human health. In this study, a tridentate imide acid monomer was synthesized with various functional groups and structures, including carboxyl (-COOH), amide (-CONH), and imide rings, to construct a new type of hyper-crosslinked poly (amide-imide) (PAI1-PAI4). Subsequently, porous carbons (PAI1-900-PAI4900) were prepared, and urea was doped during the secondary carbonization process. The ammonia gas (NH3) and carbon dioxide (CO2) generated from the high-temperature decomposition of urea can be trapped by the porous structure of the carbon-based derivatives, and these gases then react with the carbon in the porous carbon and the N-H/C-H in the amide groups, thus resulting in carbon-based materials (PAI1-U-900-PAI4-U-900) with multiple nitrogen and oxygen Lewis basic sites (C-N/N-O/C--O/-OH) and a moderate porosity. These materials enhanced the interactions between the adsorbent and bromine, iodine, and anionic dyes, and exhibited selective adsorption effects for bromide and Congo red (CR).
Rubber-based intercropping is a recommended practice due to its ecological and economic benefits. Understanding the implications of ecophysiological changes in intercropping farms on the production and technological properties of Hevea rubber is still necessary. This study investigated the effects of seasonal changes in the leaf area index (LAI) and soil moisture content (SMC) of rubber-based intercropping farms (RBIFs) on the latex biochemical composition, yield, and technological properties of Hevea rubber. Three RBIFs: rubber-bamboo (RB); rubber-melinjo (RM); rubber-coffee (RC), and one rubber monocropping farm (RR) were selected in a village in southern Thailand. Data were collected from September to December 2020 (S1), January to April 2021 (S2), and May to August 2021 (S3). Over the study period, RB, RM, and RC exhibited significantly high LAI values of 1.2, 1.05, and 0.99, respectively, whereas RR had a low LAI of 0.79. The increasing SMC with soil depths was pronounced in all RBIFs. RB and RM expressed less physiological stress and delivered latex yield, which was on average 40% higher than that of RR. With higher molecular weight distributions, their rheological properties were comparable to those of RR. However, the latex Mg content of RB and RM significantly increased to 660 and 742 mg/kg, respectively, in S2. Their dry rubbers had an ash content of more than 0.6% in S3.
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and deicing, coastal areas, and saline soils areas. In recent years, the performance evolution of asphalt materials under salt erosion environments has been widely investigated. However, there is a lack of a systematic summary of salt erosion damage for asphalt materials from a multi-scale perspective. The objective in this paper is to review the performance evolution and the damage mechanism of asphalt mixtures and binders under salt erosion environments from a multi-scale perspective. The salt erosion damage and damage mechanism of asphalt mixtures is discussed. The influence of salt categories and erosion modes on the asphalt binder is classified. The salt erosion resistance of different asphalt binders is determined. In addition, the application of microscopic test methods to investigate the salt damage mechanism of asphalt binders is generalized. This review finds that the pavement performance of asphalt mixtures decreased significantly after salt erosion. A good explanation for the salt erosion mechanism of asphalt mixtures can be provided from the perspective of pores, interface adhesion, and asphalt mortar. Salt categories and erosion modes exerted great influences on the rheological performance of asphalt binders. The performance of different asphalt binders showed a remarkable diversity under salt erosion environments. In addition, the evolution of the chemical composition and microscopic morphology of asphalt binders under salt erosion environments can be well characterized by Fourier Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), and microscopic tests. Finally, the major focus of future research and the challenges that may be encountered are discussed. From this literature review, pore expansion mechanisms differ fundamentally between conventional and salt storage asphalt mixtures. Sulfate ions exhibit stronger erosive effects than chlorides due to their chemical reactivity with asphalt components. Molecular-scale analyses confirm that salt solutions accelerate asphalt aging through light-component depletion and heavy-component accumulation. These collective findings from prior studies establish critical theoretical foundations for designing durable pavements in saline environments.
Estimating Top-of-Atmosphere (TOA) flux and radiance is essential for understanding Earth's radiation budget and climate dynamics. This study utilized polar nephelometer measurements of aerosol scattering coefficients at 17 angles (9-170 degrees), enabling the experimental determination of aerosol phase functions and the calculation of Legendre moments. These moments were then used to estimate TOA flux and radiance. Conducted at a tropical coastal site in India, the study observed significant seasonal and diurnal variations in angular scattering patterns, with the highest scattering during winter and the lowest during the monsoon. Notably, a prominent secondary scattering mode, with varying magnitude across different seasons, was observed in the 20-30 degrees angular range, highlighting the influence of different air masses and aerosol sources. Chemical analysis of size-segregated aerosols revealed that fine-mode aerosols were dominated by anthropogenic species, such as sulfate, nitrate, and ammonium, throughout all seasons. In contrast, coarse-mode aerosols showed a clear presence of sea-salt aerosols during the monsoon and mineral dust during the pre-monsoon periods. The presence of very large coarse-mode non-spherical aerosols caused increased oscillations in the phase function beyond 60 degrees during the pre-monsoon and monsoon seasons. This also led to a weak association between the phase function derived from angular scattering measurements and those predicted by the Henyey-Greenstein approximation. As a result, TOA fluxes and radiances derived using the Henyey-Greenstein approximation (with the asymmetry parameter as input in the radiative transfer model) showed a significant difference- up to 24% in seasons with substantial coarse-mode aerosol presence- compared to those derived using the Legendre moments of the phase function. Therefore, TOA flux and radiance estimates using Legendre moments are generally more accurate in the presence of complex aerosol scattering characteristics, particularly for non-spherical or coarse-mode aerosols, while the Henyey-Greenstein phase function may yield less accurate results due to its simplified representation of scattering behavior.