共检索到 74

The pedunculate oak (Quercus robur L.) is a major tree species in Europe, but it has faced recent growth decline and dieback events in some areas resulting in economic and ecosystem losses. In the southeastern edge of its natural distribution in eastern Romania, rising temperatures since the 1980s, when a shift towards warmer and more arid conditions occurred, increased evaporative demand and triggered growth decline. We analyzed the adaptive potential of six oak stands (333 individual trees) with ages ranging between 97 and 233 years, located in three wet and three dry sites. Results showed unstable climate-growth correlations with a breakpoint after 1985 when climate warming intensified. Wet soil conditions from early spring to summer enhanced growth; on the contrary, a high evaporative demand linked to warmer conditions and greater potential evapotranspiration reduced growth, particularly in wet sites. After 1985, drought stress induced a reduction in latewood width in dry sites. The relationship between growth and summer-autumn drought intensified during the last decades in all sites. Warmer spring conditions negatively affected oak growth, particularly latewood production. Wet sites had lower resilience indices, and we also noted a post-1985 progressive reduction of growth resilience. Slow-growing trees from dry sites showed growth decline, which could be an early-warning signal of impending dieback and tree death. In contrast, fast-growing trees from wet sites showed sustained relative growth improvement, which was attributed to tree age and size effects. After 1985, the pedunculate oak is more vulnerable to drought damage in dry sites near the southeastern distribution limit in response to hotter winter-spring droughts.

期刊论文 2025-08-01 DOI: 10.1016/j.dendro.2025.126369 ISSN: 1125-7865

The intrusion of petroleum into soil ecosystems causes severe environmental damage. A synergistic plant-microbe-electrochemical soil remediation technology offers a strategic and eco-friendly solution to address this issue. However, the significant mass transfer resistance in soil poses a major limitation for long-distance site remediation. This research introduces a novel technique that leverages water circulation driven by plant transpiration to facilitate the long-distance migration, adsorption, and electrochemical degradation of hydrocarbons. Experimental results demonstrate that the incorporation of Iris tectorum, polyurethane sponge (as an electrode support matrix), and water-retaining agents significantly enhanced soil water circulation, enabling the migration of soluble organic carbon over distances of up to 60 cm. Additionally, the application of a weak voltage (0.7 V) to the electrode further improved total organic carbon (TOC) removal, achieving a reduction of 193 +/- 71 mg/L. After 42 days of remediation, hydrological circulation accelerated the degradation of n-alkanes and aromatics, with removal efficiencies reaching 57 % and 44 %, respectively, within the 20-60 cm range in the microbial electrochemical cell (MEC) group. The functional microbiota, enriched with electroactive microorganisms, was effectively cultivated on the anode, with the total abundance of potential hydrocarbon-degrading bacteria increasing by 42 % compared to the control. Furthermore, a scalable configuration has been proposed, offering a novel perspective for multidimensional ecological soil remediation strategies.

期刊论文 2025-07-10 DOI: 10.1016/j.jclepro.2025.145822 ISSN: 0959-6526

Tree architecture is an important component of forest community dynamics - taller trees with larger crowns often outcompete their neighbors, but they are generally at higher risk of wind-induced damage. Yet, we know little about wind impacts on tree architecture in natural forest settings, especially in complex tropical forests. Here, we use airborne light detection and ranging (LiDAR) and 30 yr of forest inventory data in Puerto Rico to ask whether and how chronic winds alter tree architecture. We randomly sampled 124 canopy individuals of four dominant tree species (n = 22-39). For each individual, we measured slenderness (height/stem diameter) and crown area (m2) and evaluated whether exposure to chronic winds impacted architecture after accounting for topography (curvature, elevation, slope, and soil wetness) and neighborhood variables (crowding and previous hurricane damage). We then estimated the mechanical wind vulnerability of trees. Three of four species grew significantly shorter (2-4 m) and had smaller crown areas in sites exposed to chronic winds. A short-lived pioneer species, by contrast, showed no evidence of wind-induced changes. We found that three species' architectural acclimation to chronic winds resulted in reduced vulnerability. Our findings demonstrate that exposure to chronic, nonstorm winds can lead to architectural changes in tropical trees, reducing height and crown areas. La arquitectura de los & aacute;rboles es un componente importante de la din & aacute;mica de la comunidad forestal: los & aacute;rboles m & aacute;s altos con copas m & aacute;s grandes suelen sobrepasar a sus vecinos, pero por lo general corren m & aacute;s riesgo de sufrir da & ntilde;os inducidos por el viento. Sin embargo, es poco lo que se sabe sobre el impacto del viento en la arquitectura de los & aacute;rboles en entornos forestales naturales, sobre todo en bosques tropicales complejos. En este caso, utilizamos LiDAR y 30 a & ntilde;os de datos de campo en Puerto Rico para preguntarnos si los vientos cr & oacute;nicos alteran la arquitectura de los & aacute;rboles. Se tom & oacute; una muestra aleatoria de 124 individuos del dosel de cuatro especies arb & oacute;reas dominantes (n = 22-39). De cada individuo, medimos la esbeltez (altura/di & aacute;metro) y el & aacute;rea de la copa (m2) y evaluamos si la exposici & oacute;n a vientos cr & oacute;nicos influ & iacute;a en la arquitectura teniendo en cuenta la topograf & iacute;a (curvatura, elevaci & oacute;n, pendiente, humedad del suelo) y las variables del vecindario (aglomeraci & oacute;n y da & ntilde;os previos por huracanes). Luego, estimamos la vulnerabilidad mec & aacute;nica de los & aacute;rboles al viento. En los lugares expuestos a vientos cr & oacute;nicos, tres de las cuatro especies crecieron mucho menos (2-4 m) y tuvieron & aacute;reas de copa m & aacute;s peque & ntilde;as. Cecropia schreberiana, en cambio, no mostr & oacute; indicios de cambios inducidos por el viento. La aclimataci & oacute;n arquitect & oacute;nica de tres especies a los vientos cr & oacute;nicos llevaba a una reducci & oacute;n de la vulnerabilidad. Nuestros hallazgos demuestran que la exposici & oacute;n a vientos cr & oacute;nicos puede provocar cambios arquitect & oacute;nicos en los & aacute;rboles tropicales, reduciendo su altura y la superficie de sus copas.

期刊论文 2025-06-12 DOI: 10.1111/nph.70294 ISSN: 0028-646X

Snow cover is a critical factor controlling plant performance, such as survival, growth, and biomass, and vegetation cover in regions with seasonal snow (e.g., high-latitude and high-elevation regions), due to its influence on the timing and length of the growing season, insulation effect during winter, and biotic and abiotic environmental factors. Therefore, changes in snow cover driven by rising temperatures and shifting precipitation patterns are expected to alter plant performance and vegetation cover. Despite the rapid increase in research on this topic in recent decades, there is still a lack of studies that quantitatively elucidate how plant performance and vegetation cover respond to shifting snow cover across snowy regions. Additionally, no comprehensive study has yet quantitatively examined these responses across regions, ecosystems, and plant functional types. Here, we conducted a meta-analysis synthesizing data from 54 snow cover manipulation studies conducted in both the field and laboratory across snowy regions to detect how plants performance and vegetation cover respond to decreased or increased snow cover. Our results demonstrate that plant survival, aboveground biomass, and belowground biomass exhibited significant decreases in response to decreased snow cover, with rates of survival having the greatest decrease. In response to increased snow cover, plant survival, growth, biomass and vegetation cover tended to increase, except for plant belowground length growth and biomass, which showed significant decreases. Additionally, our quantitative analysis of plant responses to changes in snow cover across regions, ecosystems, and plant functional types revealed that cold regions with thin snow cover, tundra and forest ecosystems, and woody species are particularly vulnerable to snow cover reduction. Overall, this study demonstrates the strong controls that snow cover exerts on plant performance, providing insights into the dynamics of snow-covered ecosystems under changing winter climatic conditions.

期刊论文 2025-06-01 DOI: 10.1007/s10584-025-03955-y ISSN: 0165-0009

Intensifying human activities have triggered significant ecological degradation, necessitating innovative approaches to ecosystem restoration. This study introduces a novel integrated methodology combining Ecological Security Patterns (ESP) and Ecological Risk Assessment (ERA) to identify priority ecological restoration areas in the Hefei Metropolitan Area. By synthesizing these complementary approaches, we overcome the limitations of individual methods and establish a comprehensive framework for prioritizing ecological restoration. We construct a complex ecological network comprising 36 source areas spanning 8313.96 km2 and 92 interconnected ecological corridors extending 24,489.17 km. We have identified 73 ecological restoration nodes and 19 key restoration areas covering 544.45 km2, predominantly located at critical ecological junctions. The study categorizes restoration zones into five distinct types: river and lake wetland restoration, mine environment remediation, urban ecological landscape reconstruction, ecological corridor connectivity restoration, and soil and water conservation improvement. Combining ESP with ERA allows for the identification of regions most vulnerable to ecological damage while preserving key ecological functions and networks. Through the identification of urban ecological conflict zones, this study provides a strategic framework for enhancing ecosystem resilience and promoting sustainable urban development. This research is significant because of its potential to address the urgent need for effective ecological restoration strategies in rapidly urbanizing regions, offering a systematic approach to balance ecological preservation with urban development.

期刊论文 2025-06-01 DOI: 10.1016/j.ecolind.2025.113590 ISSN: 1470-160X

Intercropping in tea plantations offers multiple ecological and agronomic benefits, directly impacting tea yield and profitability. While most studies on intercropping focus on summer and autumn seasons, the ecological impacts of intercropping during spring remain underexplored. Building on initial findings that tea-rapeseed (Brassica napus L.) intercropping reduced pest damage in spring, this study explored its broader ecological effects on tea plantations and tea plant development. Results indicated that tea-rapeseed intercropping reduced young shoot damage byApolygus lucorum by 44.04 %, facilitated by enhanced soil-microbe interactions, modified spectral ecology, and activated defense pathways in tea plants during the profuse flowering period of rapeseed. Specifically, intercropping increased C and N availability in tea rhizosphere soil, boosting organic matter and nitrogen content in the shared ecological zone. This improvement was accompanied by a significant increase in the abundance of nitrogen- and phosphorus-cycling microbial taxa, such as Methylomirabilota, Armatimonadota, and Entotheonellaeota. Moreover, rapeseed intercropping altered canopy reflectance, increasing red-edge and near-infrared spectraand boosting NDVI by 5.97 %. GC-MS analysis revealed upregulated flavonoid biosynthesis and ABC transporters, leading to higher levels of antioxidants and defense compounds in tea shoots. Concurrently, predator populations (spiders, ladybirds, and hoverflies), increased by 5-7 times from rapeseed flowering to pod stages. These findings highlight the ecological and agronomic benefits of tea-rapeseed intercropping in spring, providing a foundation for sustainable tea plantation management and pest control strategies.

期刊论文 2025-05-01 DOI: 10.1016/j.indcrop.2025.120821 ISSN: 0926-6690

This article investigates a counterintuitive occurrence whereby indigenous Toba women in Pandumaan and Sipituhuta, North Sumatra, Indonesia, retained significant grievances despite successfully challenging a landgrab in their community. Juxtaposing ethnography, labour time records and interviews with soil sampling, the article explains how continued soil depletion and river erosion following the failed land grab correlate with women's increased and undercompensated labour time. In addition to these postconflict ecological damages, women's increased labour burden also reflected patriarchal expectations for female labour to help rebuild the village economy. Together, these factors fuelled the women's postconflict grievances despite community success in recovering lost land. By focusing on the relationship between environmental change and gendered agrarian relations, the article concludes by emphasising the necessity of a socioecological remedy based upon a rehabilitative framework for the reparation for social and environmental problems that are often left unaddressed in the aftermath of land conflicts.

期刊论文 2025-04-30 DOI: 10.1111/joac.70017 ISSN: 1471-0358

Root-knot nematode (RKN) causes severe yield loss in cucumber. Understanding the interactions of biocontrol agent-soil microbiomes and RKNs is essential for enhancing the efficacy of biocontrol agents and nematicides to curb RKN damage to cucumber. The field experiment in this work was conducted to determine the ability of Bacillus velezensis GHt-q6 to colonize cucumber plants, investigate its effect on the control of RKNs, and assess its influence on soil microbiology in the inter-root zone of cucumber plants. After 10 days post-treatment (DPT), GHt-q6-Rif could stably colonize the roots (4.55 x 10(4) cfu center dot g(-1)), stems (3.60 x 10(3) cfu center dot g(-1)), and leaves (3.60 x 10(2) cfu center dot g(-1)) of cucumber. The high-throughput sequencing results suggested that the bacterial community diversity increased at the late development phase (p > 0.05). The strain GHt-q6 increased the relative abundance of beneficial bacteria (Gemmatimonadaceae, Sphingomonadaceae, Pseudomonadaceae). Throughout the complete cucumber growth period, strain GHt-q6 significantly increased soil urease, sucrase, accessible potassium, and phosphorus (p < 0.05). However, strain GHt-q6 had a minimal effect on catalase activity. At the pulling stage, strain GHt-q6 exhibited 43.35% control effect on cucumber RKNs, which was 7.54% higher than that of Bacillus subtilis. The results highlighted the significant potential of the strain GHt-q6 to manage cucumber RKNs and improve soil microecology. Hence, the applications of B. velezensis GHt-q6 can enhance the nematicidal action to curb RKN infecting cucumber.

期刊论文 2025-04-21 DOI: 10.3390/agronomy15041000

BACKGROUNDPlants emit volatile organic compounds (VOCs), which serve as critical cues for herbivorous insects to locate hosts for feeding and oviposition. Understanding how adults identify host plants is essential to develop pest management strategies, particularly for hemiedaphic insects like click beetles, the larvae of which are significant soil-dwelling pests. To investigate click beetle attraction towards plant VOCs and their relevance for oviposition, we tested the attractiveness of constitutive VOCs (emitted by intact plants) and damage-induced VOCs (released by chopped plants) from 11 plant species to male and female Agriotes sputator beetles.RESULTSAgriotes sputator beetles exhibit plant species-specific olfactory preferences, which are influenced by beetle sex and female maturity and differ between constitutive and damage-induced VOCs. Female beetles showed the greatest attraction to buckwheat VOCs, especially during their main oviposition period, whereas males were more attracted to clover and ryegrass. EAG recordings show strong female antennal responses to ryegrass, carrot, maize, wild carrot, barley, and buckwheat VOCs, while male antennae responded significantly only to peas. Antennae from female beetles show overall stronger responses to constitutive VOCs than those of males (P = 0.02).CONCLUSIONThese findings facilitate the development of new approaches for Agriotes pest management. Understanding preferred plant VOCs aids in identifying attractive semiochemicals that can be used for monitoring female beetles. Additionally, recognizing attractive plants aids wireworm management by either avoiding them in crop rotations before sensitive crops (thus reducing oviposition) or by attracting beetles to specific areas where they can be targeted by control measures. (c) 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

期刊论文 2025-04-08 DOI: 10.1002/ps.8817 ISSN: 1526-498X

Aims The effects of a tropical forest logging road on soil C and N, and the compositions of Actinobacteria, Acidobacteria, and wood rot/lignin-degrading fungal (WRT/LD) decomposer communities were evaluated.Methods and results Soils from a healthy Costa Rican old growth forest before Hurricane Otto and from an adjacent, recently formed logging road built after Hurricane Otto were collected over 4 years and assessed for C and N metrics, and characteristics of the three decomposer communities determined by Illumina amplicon sequencing methods. The Logging Road negatively impacted the soil total organic C, respiration, biomass C, qCO2, and total N, while the Actinobacterial and Acidobacterial communities changed from stable compositions of copiotrophic taxa in the rich forest soil to stable compositions of oligotrophic taxa in the poor logging road soil, and the WRT/LD community changed from stable compositions of copiotrophic taxa in the forest soils to an unstable community of oligotrophic taxa with almost no overlap in genera between logging road soils.Conclusions The logging road negatively influenced 3 decomposer communities and associated C and N metrics, with the two bacterial communities taxonomically stabilizing, but the fungal community taxonomically diverging into an unstable composition over time. Monitoring efforts are on-going to provide local forest land managers with potential indicators of soil ecosystem damage and recovery.

期刊论文 2025-04-01 DOI: 10.1093/jambio/lxaf075 ISSN: 1364-5072
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 末页
  • 跳转
当前展示1-10条  共74条,8页