The reasonable value of good gradation characteristic parameters is key in designing and optimising soil-rock mixed high fill embankment materials. Firstly, the DJSZ-150 dynamic-static large-scale triaxial testing instrument was used for triaxial compression shear tests on compacted skeleton structure soil-rock mixture standard specimens. The changes in strength and deformation indicators under different gradation parameters and confining pressure were analysed. Then, based on the Janbu empirical formula, relationships between parameters K, n, and (sigma 1-sigma 3)ult and the coefficient of uniformity Cu and coefficient of curvature Cc were explored. Empirical fitting formulas for Duncan-Chang model constants a and b were proposed, establishing an improved Duncan-Chang model for soil-rock mixtures considering gradation characteristics and stress states. Finally, based on significant differences in particle spatial distribution caused by gradation changes, three generalised models of matrix-block stone motion from different particle aggregation forms were proposed. Results indicate the standard specimen's strength and deformation indicators exhibit significant gradation effects and stress-state correlations. The improved Duncan-Chang model effectively simulates the stress-strain relationship curve under different gradations and confining pressure, with its characteristics explainable based on the matrix block stone motion generalised model.
Subsequent crops are often sensitive to acetolactate synthase (ALS)-inhibiting herbicide residues, particularly in alkaline soils. The main objective of this study was to compare the impact of different ALS-inhibiting residual herbicides on growth of oil-seed rape (Brassica napus L. subsp. napus) and sugar beet (Beta vulgaris L.) in alkaline soil. In this regard, three experiments were conducted in Prague, Czech Republic, during 2021-2023. In spring, six herbicides (amidosulfuron, chlorsulfuron, imazamox, propoxycarbazone, pyroxsulam, sulfosulfuron) were applied at three application rates (1N - full, 0.5N - half, and 0.05N - 5 % of full). One and four months after application, half of each plot was sown with oilseed rape, and the other half was sown with sugar beet. Herbicide phytotoxicity and aboveground biomass were assessed four weeks after crop emergence. Weather conditions during experimental years, herbicides used, herbicide application rates and the period between herbicide application and crop sowing affected herbicide phytotoxicity and aboveground biomass of both crops. The most damaging effects were recorded with the application of chlorsulfuron for oilseed rape (phytotoxicity was 96-98 % at one month after 1N application) and sulfosulfuron and chlorsulfuron for sugar beet (phytotoxicity was 97-100 % and 90-100 %, respectively). Pyroxsulam caused the least damage to both the crops (average phytotoxicity was 18 %). Herbicide phytotoxicity was 3-times higher, and crop biomass was almost half as much as at the first assessment compared to the second assessment. Sugar beet was more sensitive than oilseed rape to chlorsulfuron and sulfosulfuron, especially in dry conditions, where 0.05 N rates caused biomass reduction of 20-60 % in sugar beet. Most of the tested herbicides could have residual effect that likely damages crops in rotation, particularly if a dry period occurs after the application of herbicides and/or sowing of crops.
To investigate the coupled time effects of root reinforcement and wet-dry deterioration in herbaceous plant-loess composites, as well as their microscopic mechanisms, this study focused on alfalfa root-loess composites at different growth stages cultivated under controlled conditions. The research included measuring root morphological parameters, conducting wet-dry cycling tests, and performing triaxial compression tests and microscopic analyses (CT scanning and nuclear magnetic resonance) on both bare loess and root-loess composites under various wet-dry cycling conditions. By obtaining shear strength parameters and microstructural indices, the study analyzed the temporal evolution of the shear strength and microstructural characteristics of root-loess composites under wet-dry cycling. The findings indicated that the alfalfa root-loess composite effective cohesion was significantly higher than that of the plain soil in the same growth stage. The alfalfa root-loess composite effective cohesion increased during the growth stage in the same dry-wet cycles. The alfalfa root-loess composite effective cohesion in the same growth stage was negatively correlated with the number of dry-wet cycles. The fatigue damage of the soil's microstructure (pore coarsening, cement hydrolysis, and crack development) increased continuously with the number of dry-wet cycles. However, due to the difference in mechanical properties between roots and the soil, the root-soil composite prevented the deterioration of the soil matrix strength by the dry-wet cycles. As the herbaceous plants grow, the time effect observed in the shear strength of the root-soil composite under the action of dry-wet cycles is the result of the interaction and dynamic coordination between the soil-stabilizing function of the herbaceous plant roots and the deterioration caused by drywet cycles.
The soil strength of soft clay is influenced by strain rate effect. Models considering strain rate effect always ignore the impact of loading rate on pore pressure and have poor applicability to 3D engineering problems. Based on the classic inelastic core boundary surface model, a logarithmic rate function representing the strain rate effect of soft soil was introduced to the hardening law. A new parameter H was added to adjust the plastic modulus while another new parameter mu is introduced to account for the strain rate effect. A rate-effect boundary surface constitutive model suitable for saturated clay was subsequently proposed. Combined with the implicit integral numerical algorithm and stress-permeability coupling analysis, the innovative model was implemented in the finite element software and validated by comparing with the results of triaxial tests. By analysing the rate-effect of 11 types of soft soil, a formula to calculate the rate parameter was derived. The developed model was used to calculate the undrained vertical bearing capacity and sliding resistance of a movable subsea mudmat. The mudmat frictional coefficient from soil undrained to partial drained and finally undrained state was obtained and compared with those from the Modified Cam-Clay model. Identical results were obtained without considering the rate effect. When considering the strain rate effect on the improvement of soil strength, the friction resistance coefficient initially decreases and then increases with the decrease of the sliding speed, eventually stabilising after reaching the limit value. The rate-effect on the friction resistance coefficient is most prominent under undrained conditions with high sliding speeds. The soil strain rate effect is suggested to be considered in the design of the subsea mudmat avoid underestimating the friction resistance.
Hydraulic conductivity plays a significant role in the evolution of liquefaction phenomena induced by seismic loading, influencing the pore water pressure buildup and dissipation, as well as the associated settlement during and after liquefaction. Experimental evidence indicates that hydraulic conductivity varies significantly during and after seismic excitation. However, most previous studies have focused on experimentally capturing soil hydraulic conductivity variations during the post-shaking phase, primarily based on the results at the stage of excess pore water pressure dissipation and consolidation of sand particles after liquefaction. This paper aims to quantify the variation of hydraulic conductivity during liquefaction, covering both the co-seismic and postshaking phases. Adopting a fully coupled solid-fluid formulation (u-p), a new back-analysis methodology is introduced which allows the direct estimation of the hydraulic conductivity of a soil deposit during liquefaction based on centrifuge data or field measurements. Data from eight well-documented free-field dynamic centrifuge tests are then analysed, revealing key characteristics of the variation of hydraulic conductivity during liquefaction. The results show that hydraulic conductivity increases rapidly at the onset of seismic shaking but gradually decreases despite high pore pressures persisting. The depicted trends are explained using the KozenyCarman equation, which highlights the combined effects of seismic shaking-induced agitation, liquefaction, and solidification on soil hydraulic conductivity during the co-seismic and post-shaking phases.
The hysteresis effect of unfrozen water during freeze-thaw cycles greatly influences the hydrothermal properties of soil. To better understand the hysteresis behavior of unfrozen water in the soil, this study utilized frequency domain reflectometry to measure the unfrozen water content variations in silty clay under both stepwise and rapid temperature change modes. The hysteresis effect of unfrozen water in soil was analyzed, also the underlying mechanism was revealed. The results indicate that unfrozen water content variations are consistent across the two temperature change modes, with hysteresis observed in both scenarios. This effect was more noticeable during the rapid temperature change mode, and soil samples with higher initial moisture content froze earlier and thawed more slowly in this mode. The hysteresis phenomena are mainly influenced by the ice crystal metastable nucleation, the blockage effect of pore ice crystallization, and the pore water pressure changes during phase transition. The main cause of unfrozen water hysteresis in soil during the initial freezing phase is the metastable nucleation process. In the later stages of freezing, the hysteresis effect is primarily driven by changes in capillary water curvature, induced by the blockage effect of pore ice crystallization, and shifts in pore water pressure during the ice-water phase transition. Also, a hysteresis model was proposed and validated against experimental data and existing models, demonstrating good performance and accurately predicting unfrozen water content under varying temperature conditions. This research enhances the understanding of the mechanism responsible for the hysteresis effect of unfrozen water content in frozen soil.
Seismic risk assessment of code-noncompliant reinforced concrete (RC) frames faces significant challenges due to structural heterogeneity and the complex interplay of site-specific hazard conditions. This study aims to introduce a novel framework that integrates three key concepts specifically targeting these challenges. Central to the methodology are fragility fuses, which employ a triplet of curves-lower bound, median, and upper bound-to rigorously quantify within-class variability in seismic performance, offering a more nuanced representation of code-noncompliant building behavior compared to conventional single-curve approaches. Complementing this, spectrum-consistent transformations dynamically adjust fragility curves to account for regional spectral shapes and soil categories, ensuring site-specific accuracy by reconciling hazard intensity with local geotechnical conditions. Further enhancing precision, the framework adopts a nonlinear hazard model that captures the curvature of hazard curves in log-log space, overcoming the oversimplifications of linear approximations and significantly improving risk estimates for rare, high-intensity events. Applied to four RC frame typologies (2-5 stories) with diverse geometries and material properties, the framework demonstrates a 15-40 % reduction in risk estimation errors through nonlinear hazard modeling, while spectrum-consistent adjustments show up to 30 % variability in exceedance probabilities across soil classes. Fragility fuses further highlight the impact of structural heterogeneity, with older, non-ductile frames exhibiting 25 % wider confidence intervals in performance. Finally, risk maps are presented for the four frame typologies, making use of non-linear hazard curves and spectrumconsistent fragility fuses accounting for both local effects and within-typology variability.
Open-ended pipe piles (OEPPs) are widely used in offshore foundations, yet accurately predicting their driving responses remains challenging due to soil plug complexities. Existing pile driving analysis models inadequately characterize the effects of soil plug, potentially leading to driving problems such as hammer refusal, pile running, and structural damage. This paper proposes an effective soil plug (ESP) model for OEPP driving analysis. The ESP model considers the effective range of soil plug, which exerts internal resistance that increases exponentially with depth while the beyond of effective range contributes only mass inertia. It also accounts for the relative slippage at the pile-soil plug interface. A differential iterative method is developed to solve the ESP model. Subsequently, investigations including the model validation and parameter analysis are conducted. Model validations against existing models and field measurements confirms the reliability of the ESP model. Parameters sensitivity analysis reveals the importance of soil plug length and distribution type of internal resistance on the pile dynamic responses. In addition, if soil plug slippage occurs, the displacement peak of soil plug increases with depth rather than one-dimensional wave attenuation. Furthermore, contrary to previous assumptions of continuous slippage, the soil plug experiences a discontinuous jump-sliding mode under long-duration impact loading. These findings provide theoretical basis for OEPP driving simulation and interpretations of high-strain dynamic test.
This paper establishes a novel full-process numerical simulation framework for analyzing the 3D seismic response of mountain tunnels induced by active faults. The framework employs a two-step approach to achieve wavefield transmission through equivalent seismic load: first, a highly efficient and accurate FMIBEM (Fast multipole indirect boundary element method) is used for large-scale 3D numerical simulations at the regional scale to generate broadband ground motions (1-5 Hz) for specific sites; subsequently, using the FEM (Finite element method), a refined simulation of the plastic deformation of surrounding rock and the elastoplastic behavior of the tunnel structure was conducted at the engineering scale. The accuracy of the framework has been validated. To further demonstrate its effectiveness, the framework is applied to analyze the impact of different fault movement mechanisms on the damage to mountain tunnels based on a scenario earthquake (Mw 6.7). By introducing tunnel structure damage classification and corresponding damage indicators, the structural damage levels of tunnels subjected to active fault movements are quantitatively evaluated. The findings demonstrate that the framework successfully simulates the entire process, from fault rupture and terrain amplification to the seismic response of tunnel structures. Furthermore, the severity of tunnel damage caused by different fault types is ranked as follows: reverse fault > normal fault > strike-slip fault.
In unsaturated soil mechanics, the liquid bridge force is a significant source of soil cohesion and tensile strength. However, the classical Young-Laplace equation, which neglects the stratified nature of water at the nanoscale, fails to accurately capture the physical and mechanical behaviour of nanoscale liquid bridges. This study utilizes molecular dynamics simulations to investigate the wetting behaviour and mechanical mechanisms of liquid bridges between particles at the nanoscale. The study proposes dividing the liquid bridge force into three components: surface tension, matric suction, and adsorption force, to explain the mechanics of nanoscale liquid bridges more comprehensively. The results demonstrate that water layers within liquid bridges exhibit discrete stratified structures at the nanoscale. Moreover, the mechanical behaviour of liquid bridges is highly dependent on pore water volume and pore spacing. Specifically, the contact angle is positively correlated with the pore spacing, while the liquid bridge force increases with the pore water volume and is inversely proportional to the pore spacing. As the separation distance increases, the liquid bridge force gradually diminishes until rupture occurs. This research expands the applicability of the classical Young-Laplace equation and offers new insights into the mechanical properties of unsaturated soils, particularly clays.