The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
A group of earthquakes typically consists of a mainshock followed by multiple aftershocks. Exploration of the dynamic behaviors of soil subjected to sequential earthquake loading is crucial. In this paper, a series of cyclic simple shear tests were performed on the undisturbed soft clay under different cyclic stress amplitudes and reconsolidation degrees. The equivalent seismic shear stress was calculated based on the seismic intensity and soil buried depth. Furthermore, reconsolidation was conducted at the loading interval to investigate the influence of seismic history. An empirical model for predicting the variation of the accumulative dissipated energy with the number of cycles was established. The energy dissipation principle was employed to investigate the evolution of cyclic shear strain and equivalent pore pressure. The findings suggested that as the cyclic stress amplitude increased, incremental damage caused by the aftershock loading to the soil skeleton structure became more severe. This was manifested as the progressive increase in deformation and the rapid accumulation of dissipated energy. Concurrently, the reconsolidation process reduced the extent of the energy dissipation by inhibiting misalignment and slippage among soil particles, thereby enhancing the resistance of the soft clay to subsequent dynamic loading.
A realistic prediction of excess pore water pressure generation and the onset of liquefaction during earthquakes are crucial when performing effective seismic site response analysis. In the present research, the validation of two pore water pressure (PWP) models, namely energy-based GMP and strain-based VD models implemented in a one-dimensional site response analysis code, was conducted by comparing numerical predictions with highquality seismic centrifuge test measurements. A careful discussion on the selection of input soil parameters for numerical simulations was made with particular emphasis on the PWP model parameter calibration which was based on undrained stress-controlled/strain-controlled cyclic simple shear (CSS) tests carried out on the same sand used in the centrifuge test. The results of the study reveal that the energy-based model predicts at all depths peak pore water pressures and dissipation behaviour in a satisfactory way with respect to experimental measurements, whereas the strain-based model underestimates the PWP measurements at low depths. Further comparisons of the acceleration response spectra illustrate that both the strain- and energy-based models provide higher computed spectral accelerations near the ground surface compared with the recorded ones, whereas the agreement is reasonable at middle depth.
The thermo-mechanical (TM) behaviour of the energy pile (EP) group becomes more complicated in the presence of seepage, and the mechanism by which seepage impacts the EP group remains unclear.In the current work, a 2 x 2 scale model test bench of EP group was set up to investigate the TM behaviour of EP group with seepage. The test results indicate that the heat exchange performance of EP group with seepage can be significantly enhanced, but also leads to obvious differences in the temperature distribution of pile and surrounding soil along the seepage direction, and thus causes evident differences in the mechanical properties between the front pile and the back pile in pile group. Compared with the parallel connection form, the thermal performance of EP group with the series connection form is slightly attenuated. However, the mechanical properties of various piles in the EP group differ significantly. Under the action of seepage, the mechanical balance properties of various piles in the forward series form are optimal, followed by the parallel form, and the reverse series form is the least optimal. A 3-D CFD model was established to further obtain the influence of seepage and arrangement forms on EP group. The findings indicate that seepage can not only mitigate thermal interference between distinct piles but also expedite the process of heat transfer from pile-soil to reach a state of stability. Concurrently, the thermal migration effect induced by seepage will be superimposed along the seepage direction, resulting in the elevation of thermal interference of each pile along the seepage direction, and the superposition of thermal migration effect increases with the time. Under the same seepage condition, the cross arrangement can enhance the thermal performance of EP group, optimize the temperature distribution of pile and soil, and thus the imbalance of mechanical properties among pile groups can be reduced. In addition, the concepts of thermal interference coefficient and heat exchange rate per unit soil volume are introduced to facilitate a more precise evaluation of the thermal interference degree of each pile in the pile group and the heat exchange performance under different pile arrangement forms.The standard deviation and mean value in the statistical method are used to evaluate the equilibrium of mechanical properties of pile group, which is more intuitive to compare the differences in mechanical properties of pile groups under different working conditions.
Energy piles, which serve the dual functions of load-bearing and geothermal energy exchange, are often modeled with surrounding soil assumed to be either fully saturated or completely dry in existing design and computational methods. These simplifications neglect soil saturation variability, leading to reduced predictive accuracy of the thermomechanical response of energy piles. This study proposes a novel theoretical framework for predicting the thermo-hydro-mechanical (THM) behavior of energy piles in partially saturated soils. The framework incorporates the effects of temperature and hydraulic conditions on the mechanical properties of partially saturated soils and pile-soil interface. A modified cyclic generalized nonlinear softening model and a cyclic hyperbolic model were developed to describe the interface shear stress-displacement relationship at the pile shaft and base, respectively. Governing equations for the load-settlement behavior of energy piles in partially saturated soils were derived using the load transfer method (LTM) and solved numerically using the matrix displacement method. The proposed approach was validated against experimental data from both field and centrifuge tests, demonstrating strong predictive performance. Specifically, the average relative error (ARE) was less than 15% for saturated soils and below 23% for unsaturated soils when evaporation effects were considered. Finally, parametric analyses were conducted to assess the effects of flow rate, groundwater table position, and softening parameters on the THM behavior of energy piles. This framework can offer a valuable tool for predicting THM behavior of energy piles in partially saturated soils, supporting their broader application as a sustainable foundation solution in geotechnical engineering.
The incorporation of PCMs in energy piles holds significant potential for revolutionising thermal management in construction, making them a crucial component in the development of next-generation systems. The existing literature on PCM-integrated energy piles largely consists of isolated case studies and experimental investigations, often focusing on specific aspects without providing a comprehensive synthesis to guide future research or practical applications. To date, no review has been conducted to consolidate and evaluate the existing knowledge on PCMs in energy piles, making this review the first of its kind in this field. Up until now, this gap in research has limited our understanding of how PCM configurations, thermal properties, and integration methods impact the thermal and mechanical performance of these systems. Through thoroughly analysing the current research landscape, this review discovers key trends, methodologies, and insights. The methodology used here involved a systematic search of the existing SCI/SCIE-indexed literature to ensure a structured review. Based on the SLR findings, it is evident that current research on PCMs in energy piles is focused on improving thermal efficiency, heat transfer, and compressive strength. Furthermore, precise adjustments in melting temperature significantly impact efficiency, with PCM integration boosting thermal energy extraction by up to 70 % in some cases, such as heating cycles, and saving up to 30 % in operational costs. PCMs also reduce soil temperature fluctuations, improving structural integrity through minimising axial load forces. However, challenges remain, including reduced mechanical strength due to voids and weak bonding, high costs, and complexities such as micro-encapsulation. We acknowledge that there are gaps in addressing certain key factors, including thermal diffusivity; volume change during phase transitions; thermal response time; compatibility with construction materials; interaction with soil, creep, and fatigue; material compatibility and durability; and the long-term energy savings associated with PCM-GEP systems.
Excessive fluorine accumulation poses a significant threat to soil ecology and even human health, yet its impact on soil fauna, especially earthworms, remains poorly understood. This study employed multi-omics and biomarkers to investigate high fluorine-induced biochemical changes that cause tissue damages in Eisenia fetida. The results demonstrated that earthworms exhibited obvious damage with fluorine addition exceeding 200 mg kg(-1), with stress levels escalating as fluorine contents increased. Further analysis of the underlying mechanisms revealed that fluorine could upregulate genes encoding mitochondrial respiratory chain complexes I-III and downregulate those for IV-V, leading to reactive oxygen species (ROS) accumulation despite antioxidant system activation. The resulting ROS interfered with deoxyribonucleoside triphosphate synthesis, prompting homologous recombination as the main DNA repair mechanism. Additionally, fluorine-induced ROS also attacked and disrupted protein and lipid related metabolisms ultimately causing oxidative damages. These cumulative oxidative damages from high fluorine contents subsequently triggered autophagy or apoptosis, resulting in tissue ulceration and epithelial exfoliation. Therefore, high fluorine could threaten earthworms by inducing ROS accumulation and subsequent biomolecule damages.
In the northwestern saline soils and coastal areas, cement soil (CS) materials are inevitably subjected to various factors including salt erosion, dry-wet cycle (DWC), temperature fluctuations and dynamic loading during its service life, which the coupling effect of these unfavourable factors seriously threatened the durability and engineering reliability of CS materials. Additionally, combined with the substantially extensive application prospects of rubber cementitious material, as a resource-efficient civil engineering material and fibre-reinforced composites, consequently, in order to address aforementioned issues, this investigation proposed to consider the incorporation of rubber particles composite basalt fiber (BF) to CS materials as an innovative engineering solution to effectively enhance the mechanical and durability properties of CS materials for prolonging its service life. In this study, sulphate ions were utilized to simulate external erosive environment and basalt fibre rubber cement soil (BFRCS) specimens were subjected to various DWC numbers (0, 1, 4, 7, 11 and 15) in diverse concentrations (0 g/L, 6 g/L and 18 g/L) of Na2SO4 solution, and specimens that had completed the corresponding DWC number were then conducted both unconfined and dynamic compressive strength tests simultaneously to analyze static and dynamic stress-strain curves, static and dynamic compressive strength, apparent morphological deterioration characteristics and energy absorption properties of BFRCS specimens. Furthermore, further qualitative and quantitative damage assessments of pore distribution and microscopic morphology of BFRCS specimens under various DWC sulphate erosion environments were carried out from the fine and microscopic perspectives through pore structure test and scanning electron microscopy (SEM) test, respectively. The test results indicated that the static, dynamic compressive strength and specific energy absorption (SEA) of BFRCS specimens exhibited a slight increase followed by a progressive decline as DWC number increased. Additionally, compared to 4 mm BFRCS specimens, those with 0.106 mm rubber particle size demonstrated more favorable resistance to DWC sulphate erosion. The air content, bubble spacing coefficient and average bubble chord length of BFRCS specimens all progressively grew as DWC number increased, while the specific surface area of pores gradually decreased. The effective combination of BF with CS matrix significantly diminished pores and weak areas within specimen, and its synergistic interaction with rubber particles efficiently mitigated the stresses associated with expansive, contraction, crystallization and osmosis subjected by specimen. Simultaneously, more ettringite (AFt) had been observed within BFRCS specimens in 18 g/L sulphate erosive environments. These findings will facilitate the design and construction of CS subgrade engineering in northwestern saline soils and coastal regions, promoting sustainable and durable solutions while reducing the detrimental environmental impact of waste rubber.
Soil salinization is a growing concern that degrades soil quality and inhibits agricultural productivity. Miscanthus species have received wide attention because of their high calorific potential, their value as an energy plant, and their ability to maintain high biomass accumulation. However, most studies focused on the biochemical and physiological responses to salt stress while neglecting the osmotic adjustment processes and the contribution of both organic and inorganic substances to these processes. This study evaluates the response mechanism of Miscanthus sinensis to salt stress (0-300 mM of NaCl) by evaluating the growth and photosynthetic parameters, photosynthetic response to light, and contribution of organic and inorganic substances to osmotic potential. The results revealed that M. sinensis adopted Na + compartmentalization and reallocation of biomass to the aboveground parts to mitigate the negative impact of salinity stress. Specifically, Na+ accumulated more in the root and leaf, with an increment magnitude of 75.4-173.9 and 56.7-217.1 times, respectively. This was supported by the changing trend of the stem/leaf ratio (25.1 %-55.9 %) compared to the root/shoot ratio (12.3 %-18.3 %). Also, salt-induced stress decreased the leaf's water content and water use efficiency as a result of low intracellular osmosis, and to mitigate osmotic damage, M. sinensis enhanced the accumulation of proline. These results offer theoretical and scientific insights into managing the cultivation and improving the yield of M. sinensis and other energy herbaceous plants in saline soils.
To study the failure mechanism of high ductile coagulation (HDC) under sulfate attack in cold saline soil area, cement-based cementing material (cement: fly ash: sand: water reducing agent: water = 1:1:0.72:0.03:0.58) and 2 % polyvinyl alcohol fiber (PVA) were used to prepare HDC sample, to increase the density and ductility of concrete. a 540-day sulfate-long-term immersion test was performed on HDC specimens under two low-temperature curing environments and different sulfate solution concentrations (5 %, 10 %). Using a combination of macro and microscopic methods, according to the principle of energy dissipation, To study the relationship between the evolution of energy (total damage energy U, dissipated energy Uds, elastic strain energy Ues) and the deterioration of strength and the change of pore structure during the compression process of HDC. According to the characteristics of stress-strain curves during HDC compression, the damage evolution characteristics of characteristic stress points during HDC compression are summarized, establish energy storage indicators Kel to evaluate the degree of internal damage of HDC. The results show that during the compression damage process of HDC after long-term soaking in sulfate solution under low temperature environment, Uds and Ues of HDC at characteristic stress points both increase first and then decrease, Kel are reduced first and then increased. The development trend of elastic strain energy and dissipative energy of HDC in 10 % sulfate solution is more drastic than that in 5 % sulfate solution. Compared with the other three groups, the D group energy storage level rises and falls more violently, and the HDC has a smaller ability to resist damage under this condition. Through the study of the correlation between macro and micro changes of HDC in cold saline soil areas and energy evolution, to provide a reference for the stable operation of highly ductile concrete in cold saline soil areas.