New soils formed after glacier retreat can provide insights into the rates of soil formation in the context of accelerated warming due to climate change. Recently deglacierized terrains (since the Little Ice Age) are subject to weathering and pedogenesis, and freshly exposed sediments are prone to react readily with the environment. This study aims to determine the impact of parent material and time on soil physical and chemical properties of nine proglacial landscapes distributed in the Tropical Andes and Alps. A total of 188 soil samples were collected along chronosequences of deglacierization and from sites that differed in terms of parent material and classified following three parent material groups: (1) Granodiorite-Tonalite (GT), (2) Gneiss-Shales-Schists (GSS), and (3) Mont-Blanc Granite (MBG). We determined physical and chemical soil properties such as contents of clay, silt, sand, organic carbon, bulk density (BD), pH, extractable cation (exCa, exMg, exK), elemental composition by Xray fluorescence (Al, Si, P, S, K, Ca, Mn, Fe, Cu, Zn, As, Mo, Hg, Pb) and ICP-MS (Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn), and mineral phase (XRD diffraction analysis). Parent material-controlled particle-size distribution, SOC, pH, available P, exCa, and exMg, whereas time since deglacierization only affected SOC and P, and exMg globally. Most of the significant differences in soil properties between parent material groups occurred within the first 17 years after deglacierization, and then we observed a homogenization between sites. While the higher SOC and P contents observed within the GT Andean sites might be due to the parent material composition leading to faster initial soil formation, we identified potential As, Cu, Mo, and Mn toxicity within those soils. Our study highlights the need to investigate further proglacial soil's buffering capacity and carbon sequestration to globally inform the conservation and management of novel proglacial ecosystems.
2024-03-30 Web of ScienceBlack Carbon (BC), as a driver of environmental change, could significantly impact the snow by accelerating melting and decreasing albedo. Systematic documentation of BC studies is crucial for a better understanding of its spatial and temporal trends. This study reviewed the BC studies in the ice core and remote lake sediments and their sources in the northern hemisphere. The literature surveyed points to around 2.9 to 3.7 times increase of BC in the European Alps and up to a three-fold increase of BC in the Himalayan-Tibetan Plateau (HTP) after the onset of industrialization in Europe and Asia, respectively. BC concentration from Greenland ice core showed seven times increase with an interrupted trend after 1950's. South Asian emissions were dominant in the HTP along with a contribution from the Middle East, whereas Western European and local emissions were responsible for the change in BC concentration in the European Alps. In the Arctic, contributions from North America, Europe and Asia persisted. Similarly, a historical reconstruction of lake sediments records demonstrates the effects of emissions from long-range transport, sediment focusing, local anthropogenic activities, precipitation and total input of flux on the BC concentration.
2024BackgroundGlobal warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found.ResultsWe observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming.ConclusionsOur study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
2023-06-16 Web of ScienceThe response of microbial communities to the predicted rising temperatures in alpine regions might be an important part of the ability of these ecosystems to deal with climate change. Soil microbial communities might be significantly affected by elevated temperatures, which influence the functioning of soils within high-alpine ecosystems. To evaluate the potential of the permafrost microbiome to adapt to short-term moderate and extreme warming, we set up an incubation experiment with permafrost and active soil layers from northern and southern slopes of a high-alpine mountain ridge on Muot da Barba Peider in the Swiss Alps. Soils were acclimated to increasing temperatures (4-40 degrees C) for 26 days before being exposed to a heat shock treatment of 40 degrees C for 4 days. Alpha-diversity in all soils increased slightly under gradual warming, from 4 to 25 degrees C, but then dropped considerably at 40 degrees C. Similarly, heat shock induced strong changes in microbial community structures and functioning in the active layer of soils from both northern and southern slope aspects. In contrast, permafrost soils showed only minor changes in their microbial community structures and no changes in their functioning, except regarding specific respiration activity. Shifts in microbial community structures with increasing temperature were significantly more pronounced for bacteria than for fungi, regardless of the soil origin, suggesting higher resistance of high-alpine fungi to short-term warming. Firmicutes, mainly represented by Tumebacillus and Alicyclobacillaceae OTUs, increased strongly at 40 degrees C in active layer soils, reaching almost 50% of the total abundance. In contrast, Saccharibacteria decreased significantly with increasing temperature across all soil samples. Overall, our study highlights the divergent responses of fungal and bacterial communities to increased temperature. Fungi were highly resistant to increased temperatures compared to bacteria, and permafrost communities showed surprisingly low response to rising temperature. The unique responses were related to both site aspect and soil origin indicating that distinct differences within high-alpine soils may be driven by substrate limitation and legacy effects of soil temperatures at the field site.
2019-04-03 Web of ScienceIn this paper, we evaluate the impact of mineral dust (MD) on snow radiative properties in the European Alps at ground, aerial, and satellite scale. A field survey was conducted to acquire snow spectral reflectance measurements with an Analytical Spectral Device (ASD) Field Spec Pro spectroradiometer. Surface snow samples were analyzed to determine the concentration and size distribution of MD in each sample. An overflight of a four-rotor Unmanned Aerial Vehicle (UAV) equipped with an RGB digital camera sensor was carried out during the field operations. Finally, Landsat 8 Operational Land Imager (OLI) data covering the central European Alps were analyzed. Observed reflectance evidenced that MD strongly reduced the spectral reflectance of snow, in particular, from 350 to 600nm. Reflectance was compared with that simulated by parameterizing the Snow, Ice, and Aerosol Radiation radiative transfer model. We defined a novel spectral index, the Snow Darkening Index (SDI), that combines different wavelengths showing nonlinear correlation with measured MD concentrations (R-2=0.87, root-mean-square error=0.037). We also estimated a positive instantaneous radiative forcing that reaches values up to 153W/m(2) for the most concentrated sampling area. SDI maps at local scale were produced using the UAV data, while regional SDI maps were generated with OLI data. These maps show the spatial distribution of MD in snow after a natural deposition from the Saharan desert. Such postdepositional experimental data are fundamental for validating radiative transfer models and global climate models that simulate the impact of MD on snow radiative properties.
2015-06-27 Web of Science