Air pollution is a global health issue, and events like forest fires, agricultural burning, dust storms, and fireworks can significantly worsen it. Festivals involving fireworks and wood-log fires, such as Diwali and Holi, are key examples of events that impact local air quality. During Holi, the ritual of Holika involves burning of biomass that releases large amounts of aerosols and other pollutants. To assess the impact of Holika burning, observations were conducted from March 5th to March 18th, 2017. On March 12th, 2017, around 1.8 million kg of wood and biomass were openly burned in about 2250 units of Holika, located in and around the Varanasi city (25.23 N, 82.97 E, similar to 82.20 m amsl). As the Holika burning event began the impact on the Black Carbon (BC), particulate matter 10 & 2.5 (PM10 and PM2.5), sulphur dioxide (SO2), oxides of nitrogen (NOx), ozone (O-3) and carbon monoxide (CO) concentration were observed. Thorough optical investigations have been conducted to better comprehend the radiative effects of aerosols produced due to Holika burning on the environment. The measured AOD at 500 nm values were 0.315 +/- 0.072, 0.392, and 0.329 +/- 0.037, while the BC mass was 7.09 +/- 1.78, 9.95, and 7.18 +/- 0.27 mu g/m(3) for the pre-Holika, Holika, and post-Holika periods. Aerosol radiative forcing at the top of the atmosphere (ARF-TOA), at the surface (ARF-SUR), and in the atmosphere (ARF-ATM) are 2.46 +/- 4.15, -40.22 +/- 2.35, and 42.68 +/- 4.12 W/m(2) for pre-Holika, 6.34, -53.45, and 59.80 W/m(2) for Holika, and 5.50 +/- 0.97, -47.11 +/- 5.20, and 52.61 +/- 6.17 W/m(2) for post-Holika burning. These intense observation and analysis revealed that Holika burning adversely impacts AQI, BC concentration and effects climate in terms of ARF and heating rate.
Globally, land subsidence (LS) often adversely impacts infrastructure, humans, and the environment. As climate change intensifies the terrestrial hydrologic cycle and severity of climate extremes, the interplay among extremes (e.g., floods, droughts, wildfires, etc.), LS, and their effects must be better understood since LS can alter the impacts of extreme events, and extreme events can drive LS. Furthermore, several processes causing subsidence (e.g., ice-rich permafrost degradation, oxidation of organic matter) have been shown to also release greenhouse gases, accelerating climate change. Our review aims to synthesize these complex relationships, including human activities contributing to LS, and to identify the causes and rates of subsidence across diverse landscapes. We primarily focus on the era of synthetic aperture radar (SAR), which has significantly contributed to advancements in our understanding of ground deformations around the world. Ultimately, we identify gaps and opportunities to aid LS monitoring, mitigation, and adaptation strategies and guide interdisciplinary efforts to further our process-based understanding of subsidence and associated climate feedbacks. We highlight the need to incorporate the interplay of extreme events, LS, and human activities into models, risk and vulnerability assessments, and management practices to develop improved mitigation and adaptation strategies as the global climate warms. Without consideration of such interplay and/or feedback loops, we may underestimate the enhancement of climate change and acceleration of LS across many regions, leaving communities unprepared for their ramifications. Proactive and interdisciplinary efforts should be leveraged to develop strategies and policies that mitigate or reverse anthropogenic LS and climate change impacts.
The city of Arequipa, the second most important city in Per & uacute;, faces numerous daunting challenges, including high-intensity but short-induration rainfalls that leads to floods and the swelling of the Chili River (mud and landslides). This situation aggravates the vulnerability of the population settled on the margins of the gorges and gullies, due to little or no territorial planning from public institutions. The local news evidence negligence every year, both in terms of human lives and infrastructure loss. The frequency of these events has increased with time and that is the reason for prompting the establishment of rainfall thresholds and the compilation of a 41-year record (1981-2021), with the aim of informing about the dangerousness of an adverse meteorological phenomenon, either predicted or in progress. For the hydrological model, the authors used the highest 24-hour precipitation data from the SENAMHI's stations (National Service of Meteorology and Hydrology of Peru) to generate the liquid hydrograph for different return periods with the Hydrologic model of HEC-HMS. Soil mechanics studies were also carried out to determine the rheological parameters of the non-Newtonian flow and then calibrate through historical events in a hydraulic model of HEC-RAS. Finally, cartographic maps in QGIS were prepared to evaluate the hazard zones flooding in the Del Pato, San L & aacute;zaro, Venezuela and Los Incas gullies.
In March 2020, an extreme rainfall in Baixada Santista, Brazil, led to a series of landslides affecting more than 2800 people and resulting losses exceeding USD 43 million. This attribution study compared extreme rainfall in two large ensembles of the UK Met Office Hadley Centre HadGEM3-GA6 model that represented the event with and without the effects of anthropogenic climate change. Antecedent rainfall conditions on two different timescales are considered, namely extreme 60-day rainfall (Rx60day) which relates to the soil moisture conditions and extreme 3-day rainfall (Rx3day) which represents landslide triggering heavy rainfall. In the scenario including both natural and human-induced factors the antecedent 60 day rainfall became 74% more likely, while the short-term trigger was 46% more likely. The anthropogenic contribution to changes in rainfall accounted for 20-42% of the total losses and damages. The greatest economic losses occurred in Guaruj & aacute; (42%), followed by S & atilde;o Vicente (30%) and Santos (28%). Landslides were responsible for 47% of the homes damaged, 85% of the homes destroyed, all reported injuries, and 51% of the deaths associated with heavy rainfall. Changes in land cover and urbanization showed a pronounced increase in urbanized area in Guaruj & aacute; (107%), S & atilde;o Vicente (61.7%) and Santos (36.9%) and a reduction in farming area. In recent years, the region has experienced an increase in population growth and a rise in the proportion of irregular and/or precarious housing in high-risk areas. Guaruj & aacute; has the highest number of such dwellings, accounting for 34.8%. Our estimates suggest that extreme precipitation events are having shorter return periods due to climate change and increased urbanization and population growth is exposing more people to these events. These findings are especially important for decision-makers in the context of disaster risk reduction and mitigation and adaptation to climate change.
The storm Daniel and subsequent floods hit the Region of Thessaly (Greece) in early September 2023, causing extensive damage to the built environment (buildings, networks, and infrastructure), the natural environment (water bodies and soil), and the population (fatalities, injured, homeless, and displaced people). Additionally, the conditions and factors favorable for indirect public health impact (infectious diseases) emerged in the flood-affected communities. The factors had to do with infectious diseases from rodents and vectors, injuries, respiratory infections, water contamination, flood waste and their disposal sites as well as structural damage to buildings and the failures of infrastructure. The conditions that evolved necessitated the mobilization of the Civil Protection and Public Health agencies not only to cope with the storm and subsequent floods but also to avoid and manage indirect public health impact. The instructions provided to affected residents, health experts, and Civil Protection staff were consistent with the best practices and lessons learned from previous disasters. The emphasis should be on training actions for competent agencies, as well as education and increasing the awareness of the general population. Non-structural and structural measures should be implemented for increasing the climate resilience of infrastructures including the health care systems within a One Health approach.
An unprecedented heat wave occurred over the Pacific Northwest and southwest Canada on 25-30 June 2021, resulting in all-time temperature records that greatly exceeded previous record maximum temperatures. The impacts were substantial, including several hundred deaths, thousands of hospitalizations, a major wildfire in Lytton, British Columbia, Canada, and severe damage to regional vegetation. Several factors came together to produce this extreme event: a record-breaking midtropospheric ridge over British Columbia in the optimal location, record-breaking midtropospheric temperatures, strong subsidence in the lower atmosphere, low-level easterly flow that produced downslope warming on regional terrain and the removal of cooler marine air, an approaching low-level trough that enhanced downslope flow, the occurrence at a time of maximum insolation, and drier-than-normal soil moisture. It is shown that all-time-record temperatures have not become more frequent and that annual high temperatures only increased at the rate of baseline global warming. Although anthropogenic warming may have contributed as much as 1 degrees C to the event, there is little evidence of further amplification from increasing greenhouse gases. Weather forecasts were excellent for this event, with highly accurate predictions of the extreme temperatures. SIGNIFICANCE STATEMENT: This paper describes the atmospheric evolution that produced an extreme heat wave over the Pacific Northwest during June 2021 and puts this event into historical perspective.
The arid northwestern China is the most vulnerable region to climate change, where the variability of seasonally extreme temperature events has profound implications for both its hydrological, ecological, and human systems. In this study, we applied 15 indicators of extreme temperature to analyze the spatial and temporal variation of its occurrence in arid northwestern China for a recent 40-year period (1979 to 2018). These extreme temperature event dynamics were then combined with atmospheric and oceanic circulation to explore their response mechanisms. Our results revealed the following: (1) Over the 40-year period, the annual average temperature in this arid zone increased at a rate of 0.4 degrees C/decade (p = 0.09), exceeding the national average rate (0.28 degrees C/decade). Apart from a few indicators, extreme temperature events (TXx, TNx, TXn and TNn) generally increased at least twice as fast as average temperature during the four seasons, especially in spring, when TNn (0.98 degrees C/decade) rose five times faster than did the average temperature (0.2 degrees C/decade). (2) Spatially, except for the Kunlun Mountains and Tarim Basin, seasonal warming occurred in most parts of the studied arid zone, being most prominent in the summer. In this season, the average number of warm nights increased (3.23 days/decade), while the average number of cold nights decreased (2.69 days/decade). (3) After the 1990s, extreme temperature events accelerated significantly. The Cold Spell Duration Indicator decreased 42% in spring and the Warm Spell Duration Indicator increased 300% in summer, from 1979 -1998 to 1999-2018, which may hasten the formation of snow and glacier melt flooding events in the spring and summer. Spatiotemporal variability in seasonally extreme temperature events was closely related to atmospheric and oceanic circulation, particularly for the AMO (r = 0.8). Altogether, these findings enhance our understanding of how to better assess shifts in extreme temperature events in response to a changing climate in arid zones.
In 2015 the beginning of the Indian Smart Cities' mission was one of the significant steps taken by the Indian government to make the urban environment resilient to climate change impact and extreme weather events like drought, floods, heatwaves, etc. This study computes the urban drought risk for Indian smart cities before the beginning of the Indian smart cities mission. This study considers three decadal variability (1982-2013) in meteorological, hydrological, vegetation, and soil moisture parameters for inducing water scarcity and drought conditions in urban regions. Hazards associated with urban drought-inducing parameters variability, vulnerability, and exposure of Indian smart cities were used to compute the Urban drought risk. The research investigations revealed the maximum urban drought risk for Bangalore, Chennai, and Surat cities. Northwest, West Central, and South Peninsular urban regions have higher risk among all the urban regions of India. Indian smart cities mission can be used to make Indian cities resilient to urban drought risk and increase their sustainability. The present research aligned with several national and international agreements by providing an urban drought risk rank for Indian cities, making them less vulnerable to extreme weather events and improving their resilience to climate change.
Global warming has been accelerating the frequency and intensity of climate extremes, and has had an im-mense influence on the economy and society, but attention is seldom paid to future Antarctic temperature extremes. This study investigates five surface extreme temperature indices derived from the multimodel ensemble mean (MMEM) based on 14 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) under the shared socioeconomic path-ways (SSPs) of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. In Antarctica, the variations in extreme temperature indices ex-hibit regional and seasonal differences. The diurnal temperature range (DTR) usually illustrates a downward trend, particularly for the Antarctic Peninsula and Antarctic coast, and the strongest change occurs in austral summer. In all cases, the annual highest minimum/maximum temperature (TNx/TXx) increases faster in inland Antarctica. Antarctic amplification of extreme temperature indices is detected and is strongest at the lowest maximum temperature (TXn). At the Antarctic Pen-insula, TXx amplification only appears in winter. Great DTR amplification appears along the Antarctic coast and is strongest in summer and weakest in winter. The changes in extreme temperature indices indicate the accelerated Antarctic warming in future scenarios.
1. Winter is a period of dormancy for plants of cold environments. However, winter climate is changing, leading to an increasing frequency of stochastic warm periods (winter warming events) and concomitant reductions in snow cover. These conditions can break dormancy for some plants and expose them to freeze-and-thaw stress. Mosses are a major component of high-latitude ecosystems, yet the longer-term impacts of such winter warming events on mosses remain unknown. 2. In order to determine the longer-term legacy effects of winter warming events on mosses, we undertook a simulation of these events over three consecutive winters in a sub-Arctic dwarf shrub-dominated open woodland. The mat-forming feather moss, Hylocomium splendens (the most abundant cryptogam in this system), is one of the most widespread Arctic and boreal mosses and plays a key functional role in ecosystems. We studied the ecophysiological performance of this moss during the summers of the experimental period (2007-2009) and in the following years (2010-2013). 3. We show that the previously reported warming-induced reduction in segment growth and photosynthesis during the experimental years was persistent. Four years after the last event, photosynthesis and segment growth were still 30 and 36% lower than control levels, which was only a slight improvement from 44 and 43% 4 years earlier. Winter warming did not affect segment symmetry. During the years after the last simulated event, in both warmed and control plots, chlorophyll fluorescence and segment growth, but not net photosynthesis, increased slightly. The increases were probably driven by increased summer rainfall over the study years, highlighting the sensitivity of this moss to rainfall change. 4. Overall, the legacy effects shown here demonstrate that this widespread and important moss is likely to be significantly disadvantaged in a future sub-Arctic climate where frequent winter warming events may become the norm. Given the key importance of mosses for soil insulation, shelter and carbon sequestration in high-latitude regions, such persistent impacts may ultimately affect important ecosystem functions.