共检索到 57

Seasonally frozen ground (SFG) is a significant component of the cryosphere, and its extent is gradually increasing due to climate change. The hydrological influence of SFG is complex and varies under different climatic and physiographic conditions. The summer rainfall dominant climate pattern in Qinghai Lake Basin (QLB) leads to a significantly different seasonal freeze-thaw process and groundwater flow compared to regions with winter snowfall dominated precipitation. The seasonal hydrological processes in QLB are not fully understood due to the lack of soil temperature and groundwater observation data. A coupled surface and subsurface thermal hydrology model was applied to simulate the freeze-thaw process of SFG and groundwater flow in the QLB. The results indicate that SFG begins to freeze in early November, reaches a maximum freezing depth of approximately 2 meters in late March, and thaws completely by June. This freeze-thaw process is primarily governed by the daily air temperature variations. During the early rainy season from April to June, the remaining SFG in deep soil hinders the majority of rainwater infiltration, resulting in a two-month delay in the peak of groundwater discharge compared to scenario with no SFG present. Colder conditions intensify this effect, delaying peak discharge by 3 months, whereas warmer conditions reduce the lag to 1 month. The ice saturation distribution along the hillslope is affected by topography, with a 10 cm deeper ice saturation distribution and 3 days delay of groundwater discharge in the steep case compared to the flat case. These findings highlight the importance of the freeze-thaw process of SFG on hydrological processes in regions dominated by summer rainfall, providing valuable insights into the hydro-ecological response. Enhanced understanding of these dynamics may improve water resource management strategies and support future research into climate-hydrology interactions in SFG-dominated landscapes.

2024-11-22 Web of Science

Mountain permafrost extends over a vast area throughout the Chilean and Argentinean Andes, making it a key component of these mountain ecosystems. To develop an overview of the current state of knowledge on southern Andean permafrost, it is essential to outline appropriate research strategies in a warmer climate context. Based on a comprehensive review of existing literature, this work identifies eight main research themes on mountain permafrost in the Chilean and Argentinean Andes: paleoenvironmental reconstructions, permafrost-derived landforms inventories, permafrost distribution models, internal structure analysis, hydrogeochemistry, permafrost dynamics, geological hazards, and transitional landscape studies. This extensive review work also highlights key debates concerning the potential of permafrost as a water resource and the factors influencing its distribution. Furthermore, we identified several challenges the scientific community must address to gain a deeper understanding of mountain permafrost dynamics. Among these challenges, we suggest tackling the need to broaden spatial focus, along with the use of emerging technologies and methodologies. Additionally, we emphasize the importance of developing interdisciplinary approaches to effectively identify the impacts of climate change on mountain permafrost. Such efforts are essential for adequately preparing scientists, institutional entities, and society to address future scenarios.

2024-11-15 Web of Science

Frozen ground (FG) plays an important role in global and regional climates and environments through changes in land freeze-thaw processes, which have been conducted mainly in different regions. However, the changes in land surface freeze-thaw processes under climate change on a global scale are still unclear. Based on ERA5-Land hourly land skin temperature data, this study evaluated changes in the global FG area, global land surface first freeze date (FFD), last freeze date (LFD) and frost-free period (FFP) from 1950 to 2020. The results show that the current FG areas (1991-2020 mean) in the Northern Hemisphere (NH), Southern Hemisphere (SH), and globe are 68.50 x 10(6), 9.03 x 10(6), and 77.53 x 10(6) km(2), which account for 72.4%, 26.8%, and 60.4% of the exposed land (excluding glaciers, ice sheets, and water bodies) in the NH, SH and the globe, respectively; further, relative to 1951-1980, the FG area decreased by 1.9%, 8.8%, and 2.8%, respectively. Seasonally FG at lower latitudes degrades to intermittently FG, and intermittently FG degrades to non-frozen ground, which caused the global FG boundary to retreat to higher latitudes from 1950 to 2020. The annual FG areas in the NH, SH, and globe all show significant decreasing trends ( p < 0.05) from 1950 to 2020 at -0.32 x 10(6), -0.22 x 10(6), and -0.54 x 10(6) km(2) per decade, respectively. The FFP prolongation in the NH is mainly influenced by LFD advance, while in the SH it is mainly controlled by FFD delay. The prolongation trend of FFP in the NH (1.34 d per decade) is larger than that in the SH (1.15 d per decade).

2024-11

Tibetan Plateau (TP) is known as the Third Pole of the Earth. Any changes in land surface processes on the TP can have an unneglectable impact on regional and global climate. With the warming and wetting climate, the land surface of the TP saw a darkening trend featured by decreasing surface albedo over the past decades, primarily due to the melting of glaciers, snow, and greening vegetation. Recent studies have investigated the effects of the TP land surface darkening on the field of climate, but these assessments only address one aspect of the feedback loop. How do these darkening-induced climate changes affect the frozen ground and ecosystems on the TP? In this study, we investigated the impact of TP land surface darkening on regional frozen ground and ecosystems using the state-of-the-art land surface model ORCHIDEE-MICT. Our model results show that darkening-induced climate changes on the TP will lead to a reduction in the area of regional frozen ground by 1.1x104 +/- 0.019x104 km2, a deepening of the regional permafrost active layer by 0.06 +/- 0.0004 m, and a decrease in the maximum freezing depth of regional seasonal frozen ground by 0.06 +/- 0.0016 m compared to the scenario without TP land surface darkening. Furthermore, the darkening-induced climate change on the TP will result in an increase in the regional leaf area index and an enhancement in the regional gross primary productivity, ultimately leading to an increase in regional terrestrial carbon stock by 0.81 +/- 0.001 PgC. This study addresses the remaining piece of the puzzle in the feedback loop of TP land surface darkening, and improves our understanding of interactions across multiple spheres on the TP. The exacerbated regional permafrost degradation and increasing regional terrestrial carbon stock induced by TP land surface darkening should be considered in the development of national ecological security barrier.

2024-10-01 Web of Science

Seasonal freeze-thaw (F-T) cycles significantly affect the mechanical properties of soils and the behavior of pile foundations in soils subjected to F-T cycles under different loading conditions. Soils exposed to F-T cycles can impact the performance of pile foundations. Consequently, the effects of F-T cycles should be taken into account when designing piles, particularly in cold regions such as Canada. In recent years, climatic conditions in Canada have changed due to global warming, increasing the number of F-T cycles in many regions each year. This study aimed to investigate the influence of different numbers of F-T cycles on the behavior of piles in sandy soils. Laboratory experiments were conducted on physical models of piles subjected to axial (uplift) and lateral loads combined with F-T cycles. The model was scaled using standard scaling principles, and the test apparatus was equipped with various sensors to measure temperatures, forces, and displacements. The results showed that as the number of F-T cycles increased, the lateral capacities of the piles under individual and combined loads increased steadily. The lateral load capacity increased from 350 to 430 N after five F-T cycles under individual loading and from 225 to 455 N after five F-T cycles under combined loading. However, the pile's uplift load capacity remained constant under individual and combined loads and there was no change due to F-T cycles. The results of this experimental study will be useful for understanding the behavior of piles subjected to seasonal F-T cycles and for improving the design of pile foundations in cold regions.

2024-09-01 Web of Science

Observations from 1,047 meteorological stations from September 1, 2006 to August 31, 2015 revealed regional differences in the freezing and thawing processes of seasonally frozen ground (SFG) across China. SFG generally undergoes a one-way freezing process (i.e., top-down), and the stations with a large freeze depth generally experienced long freeze durations. During the thawing process, soil is generally characterized by two-way thawing (i.e., top-down and bottom-up) in the region north of 35 ' N, ' N, especially north of 30 ' N ' N (except in northeastern China). The onset of thawing from the bottom occurs earlier than that from the top at most stations in the two-way thawing region. The stations exhibiting one-way thawing (i.e., bottom-up) were mainly located on the southern edge of eastern China (east of 110 degrees E) degrees E) and in southern part of Xinjiang and southeast part of the Qinghai-Tibet Plateau. The freezing process lasts several days to more than four months longer than the soil thawing process, and this difference tends to be larger in high-latitude and high-altitude regions. All of the sites experienced a discontinuous freeze-thaw process, the station-average duration of which was less than a quarter of that of the continuous freeze-thaw process. Strong associations of soil freeze depth with air temperature (as characterized by the air freezing index and air thawing index) implied a dominant influence of air temperature on the soil freeze-thaw process. During the freezing process, this relationship was partially modulated by snow cover in snowy regions, such as northeast China, northwest China, and the eastern Tibetan Plateau. This paper provides the first overview of regional differences in the freezing and thawing processes of SFG over China, and the findings improve our understanding of the soil freeze-thaw process and provide important information to support research into regional landscapes, ecosystems, and hydrological processes.

2024-08-01 Web of Science

Frozen ground (FG) plays an important role in global and regional climates and environments through changes in land freeze-thaw processes, which have been conducted mainly in different regions. However, the changes in land surface freeze-thaw processes under climate change on a global scale are still unclear. Based on ERA5-Land hourly land skin temperature data, this study evaluated changes in the global FG area, global land surface first freeze date (FFD), last freeze date (LFD) and frost-free period (FFP) from 1950 to 2020. The results show that the current FG areas (1991-2020 mean) in the Northern Hemisphere (NH), Southern Hemisphere (SH), and globe are 68.50 x 10(6), 9.03 x 10(6), and 77.53 x 10(6) km(2), which account for 72.4%, 26.8%, and 60.4% of the exposed land (excluding glaciers, ice sheets, and water bodies) in the NH, SH and the globe, respectively; further, relative to 1951-1980, the FG area decreased by 1.9%, 8.8%, and 2.8%, respectively. Seasonally FG at lower latitudes degrades to intermittently FG, and intermittently FG degrades to non-frozen ground, which caused the global FG boundary to retreat to higher latitudes from 1950 to 2020. The annual FG areas in the NH, SH, and globe all show significant decreasing trends ( p < 0.05) from 1950 to 2020 at -0.32 x 10(6), -0.22 x 10(6), and -0.54 x 10(6) km(2) per decade, respectively. The FFP prolongation in the NH is mainly influenced by LFD advance, while in the SH it is mainly controlled by FFD delay. The prolongation trend of FFP in the NH (1.34 d per decade) is larger than that in the SH (1.15 d per decade).

2024-04-01 Web of Science

Permafrost is ground that remains at or below 0 degrees C for two or more consecutive years. It is overlain by an active layer which thaws and freezes annually. The difference between these definitions - the active layer based on pore water phase and permafrost based on soil temperature - leads to challenges when monitoring and modelling permafrost environments. Contrary to its definition, the key properties of permafrost including hardness, bearing capacity, permeability, unfrozen water content, and energy content, depend primarily on the ice content of permafrost and not its temperature. Temperature-based measurements in permafrost systems often overlook key features, e.g. taliks and cryopegs, and comparisons between measured and modelled systems can differ energetically by up to 90 % while reporting the same temperature. Due to the shortcomings of the temperature-based definition, it is recommended that an estimate of ice content be reported alongside temperature in permafrost systems for both in-situ measurements and modelling applications.Plain language summary: Permafrost is ground that remains at or below 0 degrees C for two or more consecutive years. Above it sits an active layer which thaws and freezes annually (meaning that the water in the ground changes to ice each winter). The difference between these definitions - the active layer based on the state or water in the ground and permafrost based on ground temperature - leads to challenges when measuring (in the field) and modelling (using computers) permafrost environments. In addition to these challenges, the key properties of permafrost including its ability to support infrastructure, convey water, and absorb energy depend more on its ice content than its temperature. Due to the shortcomings of the temperature-based definition, it is recommended that an estimate of ice content be reported alongside temperature in permafrost systems for both field measurements and modelling applications.

2024-02-20 Web of Science

In the context of global warming, the soil freeze depth (SFD) over the Tibetan Plateau (TP) has undergone significant changes, with a series of profound impacts on the hydrological cycle and ecosystem. The complex terrains and high elevations of the TP pose great challenges in data acquisition, presenting difficulties for studying SFD in this region. This study employs Stefan's solution and downscaled datasets from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate the future SFDs over the TP. The changing trends of the projected SFDs under different Shared Socio-economic Pathways (SSP) scenarios are investigated, and; the responses of SFDs to potential climatic factors, such as temperature and precipitation, are analyzed. The potential impacts of SFD changes on eco-hydrological processes are analyzed based on the relationships between SFDs, the distribution of frozen ground, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Results show that the projected SFDs of the TP are estimated to decrease at rates of 0.100 cm/yr under the SSP126, 0.330 cm/yr under the SSP245, 0.565 cm/yr under the SSP370, and 0.750 cm/yr under the SSP585. Additionally, the SFD decreased at a rate of 0.160 cm/yr during the historical period from 1950 to 2014, which was between the decreasing rates of the SSP126 and SSP245 scenarios. The projected SFDs are negatively correlated with air temperature and precipitation, more significant under the higher emissions scenario. The projected decrease in SFDs will significantly impact eco-hydrological processes. A rapid decrease in SFD may lead to a decline in soil moisture content and have adverse impacts on vegetation growth. This research provides valuable insights into the future changes in SFD on the TP and their impacts on eco-hydrological processes.

2023-12-20 Web of Science

Downward solar radiation (DSR) and air temperature (Ta) have significant influences on the thermal state of frozen ground. These parameters are also important forcing terms for physically based land surface models (LSMs). However, the quantitative influences of inaccuracies in DSR and Ta products on simulated frozen ground temperatures remain unclear. In this study, three DSR products (CMFD-SR, Tang-SR, and GLDAS-SR) and two Ta products (CMFD-Ta and GLDAS-Ta) were used to force an LSM model in an alpine watershed in Northwest China, to investigate the sensitivity of simulated ground temperatures to different DSR and Ta products. Compared to a control model (CTRL) forced by in situ observed DSR, ground temperatures simulated by the experimental model forced by GLDAS-SR are obviously decreased because GLDAS-SR is much lower than in situ observations. Instead, simulation results in models forced by CMFD-SR and Tang-SR are much closer to those of CTRL. Ta products led to significant errors in simulated ground temperatures. In conclusion, both CMFD-SR and Tang-SR could be used as good alternatives to in situ observed DSR for forcing a model, with acceptable errors in simulation results. However, more care need to be paid for models forced by Ta products instead of Ta observations, and conclusions should be carefully drawn.

2023-10-01 Web of Science
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共57条,6页