共检索到 52

Root-knot nematodes (RKN) cause extensive damage to grapevine cultivars. RKN-resistant grapevine rootstocks remain vulnerable to biotic and abiotic stresses. This study aimed to determine the influence of composted animal manures (CAMs) [chicken manure (CM), cow manure (CowM), and sheep manure (SM)] with or without plant growth-promoting rhizobacteria (PGPR) on the population of Meloidogyne incognita, free-living nematodes (FLNs) and predaceous nematodes (PNs) residing in the soils of vineyard cultivars (Flame, Superior and Prime). The nematodes were isolated from grapevine roots and rhizosphere soils, then the absolute frequency of occurrence (FO), relative FO, prominence value (PV), and population density (PD) were assessed. The impact of CAMs and PGPR on the growth parameters, fruit output, and quality of three grapevine varieties was subsequently evaluated. Eight treatments included a control without CAMs or PGPR amendments, the CAMs alone, or CAM treatments combined with PGPR. The results showed that FLNs and PNs were more abundant in Prime than Flame or Superior cultivars when poor sandy loam soils were supplied with CAMs. Among all tested manures, CM was the best treatment as a nematicide. This was evident from the decreased numbers of M. incognita and increased numbers of FLNs and PNs in grapevine fields. Compared to the soil-applied oxamyl (a systemic nematicide), which was efficiently suppressive on M. incognita for two months, CM significantly (P < 0.05) decreased PD of the phytonematodes for five months, improved soil structure and enhanced the soil biological activities. There were significant (P < 0.05) increases in the number of leaves/vines by 79.9, 78.8, and 73.1%; and total fruit weight/vine by 76.9, 75.0, and 73.0% in Flame, Superior, and Prime varieties, respectively, compared to untreated vines. Regardless of the cultivar, soils amended with CM + PGPR achieved the lowest number of M. incognita among all other treatments, followed by SM + PGPR and CowM + PGPR. It was concluded that CAMs amendment, mainly CM, along with PGPR in poor sandy soils of temperate areas, is considered a sustainable approach for reducing parasitic nematodes and improving agricultural management.

期刊论文 2025-06-01 DOI: 10.1007/s10658-024-02999-7 ISSN: 0929-1873

The growth and evolution of sinkholes are a considerable proportion of the damage related to subsidence disaster in alluvial areas after ground water extraction for irrigation. In this research it was tried to study the evolution of the sinkholes from the birth point to the stabilization or final step. In the Eqlid-Abarkooh alluvial fan was selected an area about 300 km2 with giant sinkholes where consist; the city of Abarkooh, arable irrigated lands and desert rangelands. The major aspect on the study area was southwest to northeast where it ended to Abarkooh playa. For investigating the formation and evolution of these sinkholes in the study area, field observation for 2 years were done. Soil samples were taken from surface soils (0-25 cm) near and far of the sinkholes. Moreover, 4 soil samples were obtained from the deepest sinkhole as control sample in the study area. Chemical, physical and mechanical soil analyses were performed. Finally, the Ground Penetrating Radar (GPR) method were done for detection subsurface holes to depth of 4 m around the sinkholes. The chemical soil properties results include Electro Conductivity (EC) and the ratio of Ca2+/Mg2+ in lime which was important factors to formation of sinkholes changed from 2.05 to 19.3 dS/m, 0.15 to 6 respectively. The mechanical soil parameters such as Coefficient of Linear Extensibility (COLE) and Plasticity Index (PI) changed from 0.05 to 1.67, 0.99% to 15% respectively. According to sinkhole development, the results obtained that there was a relationship between diameter of sinkhole obtained from 0.6 to 15 m and groundwater extraction quantity changed from 0.18 to 18.14 m3/ha over 25 years. The groundwater level dropped 15 m and sinkhole volume variation obtained 0.014 to 2650 m3 over 25 years. Field discovery and google earth images showed that sinkholes were developed in 3 phases as (1) growth phase (2) mature and (3) steady phases up to about 25 years. The GPR results found some land breaks and a hole underground in the activation and growth phase of sinkhole evolution. Finally, according to some soil parameters and GPR results, the sinkhole hazard map was created in the study area.

期刊论文 2025-06-01 DOI: 10.1007/s40808-025-02336-9 ISSN: 2363-6203

The degradation of subarctic peatland ecosystems under climate change impacts surrounding landscapes, carbon balance, and biogeochemical cycles. To assess these ecosystems' responses to climate change, it is essential to consider not only the active-layer thickness but also its thermo-hydraulic conditions. Ground-penetrating radar is one of the leading methods for studying the active layer, and this paper proposes systematically investigating its potential to determine the thermal properties of the active layer. Collected experimental data confirm temperature hysteresis in peat linked to changes in water and ice content, which GPR may detect. Using palsa mires of the Kola Peninsula (NW Russia) as a case study, we analyze relationships between peat parameters in the active layer and search for thermal gradient responses in GPR signal attributes. The results reveal that frequency-dependent GPR attributes can delineate thermal intervals of +/- 1 degrees C through disperse waveguides. However, further verification is needed to clarify the conditions under which GPR can reliably detect temperature variations in peat, considering factors such as moisture content and peat structure. In conclusion, our study discusses the potential of GPR for remotely monitoring freeze-thaw processes and moisture distribution in frozen peatlands and its role as a valuable tool for studying peat thermal properties in terms of permafrost stability prediction.

期刊论文 2025-05-22 DOI: 10.3390/rs17111805

Soil salinization has been the major form of soil degradation under the dual influence of climate change and high-intensity human activities, threatening global agricultural sustainability and food security. High salt concentrations induce osmotic imbalance, ion stress, oxidative damage, and other hazards to plants, resulting in retarded growth, reduced biomass, and even total crop failure. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR), as a widely distributed group of beneficial soil microorganisms, are emerging as a valuable biological tool for mitigating the toxic effects of high salt concentrations and improve plant growth while remediating degraded saline soil. Here, the current status, harm, and treatment measures of global soil salinization are summarized. The mechanism of salt tolerance and growth promotion induced by HT-PGPR are reviewed. We highlight that advances in multiomics technologies are helpful for exploring the genetic and molecular mechanisms of microbiota centered on HT-PGPR to address the issue of plant losses in saline soil. Future research is urgently needed to comprehensively and robustly determine the interaction mechanism between the root microbiome centered on HT-PGPR and salt-stressed plants via advanced means to maximize the efficacy of HT-PGPR as a microbial agent. Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR) are a valuable biological tool for mitigating the toxic effects of high salt concentrations. And the microbiome centered on HT-PGPR is solutions for sustainable agriculture in saline soils.

期刊论文 2025-05-01 DOI: 10.1093/femsec/fiaf037 ISSN: 0168-6496

Introduction Botrytis cinerea is one of the pathogenic fungi causing major problems worldwide in crops such as tomato. Some Plant Growth-Promoting Rhizobacteria (PGPR) can activate induced systemic resistance (ISR) pathways in crops, reducing the need for antifungals.Methods Three strains belonging to the species Peribacillus frigoritolerans (CD_FICOS_02), Pseudomonas canadensis (CD_FICOS_03), and Azotobacter chroococcum (CD_FICOS_04), which exhibit outstanding PGPR properties, were evaluated for their ability to protect tomato plants against B. cinerea infection by ISR via soil inoculation.Results The strains CD_FICOS_02 and CD_FICOS_03 reduced B. cinerea incidence and plant oxidative stress. The first strain mainly increased the expression of genes related to the salicylic acid pathway, while the second increased the expression of genes related to the jasmonic acid/ethylene hormonal pathway, indicating preferential ISR activation by each of these pathways. In addition, CD_FICOS_03 was able to increase the root and aerial biomass production of infected plants compared to the control. Interestingly, although the strain CD_FICOS_04 did not reduce the damage caused by B. cinerea, it increased the biomass of infected plants.Discussion Our results suggest that the best strategy for biocontrol of B. cinerea is to combine the ability to promote plant growth with the ability to induce systemic resistance, as demonstrated by strains P. frigoritolerans CD_FICOS_02 and P. canadensis CD_FICOS_03.

期刊论文 2025-04-15 DOI: 10.3389/fpls.2025.1570986 ISSN: 1664-462X

Subarctic palsa mires are natural indicators of the status of permafrost in its sporadic distribution zone. Estimation of the rate of their thawing can become an auxiliary indicator to predict climate shifts. The formation, growth, and degradation of palsas are dynamic processes that depend on seasonal weather fluctuations and local environmental factors. Therefore, accurate forecasts of palsas conditions and related ecosystem shifts must be based on a broad set of attributes of palsas from different regions of the Northern Hemisphere. With this in mind, we studied two palsa mires sites on the Kola Peninsula, for which no thorough descriptions were previously available. The first site, Chavanga, is at the southern limit of the permafrost zone under unfavorable climatic conditions and is a collapsing relic. The second site, Ponoy, in contrast, is within the sporadic permafrost zone with relatively cold and dry conditions. Our dataset was created by combining several methods to produce detailed spatial models of permafrost for the studied palsa mires. We used 3D ground-penetrating radar (GPR) survey, UAV-based orthophoto maps, peat thermometry, time-domain reflectometry, and manual sampling. We developed two integrated geospatial models that describe the active layer, the configuration of the palsa frozen core, and its thermal state and identify the zones of the most intense thawing. These observations revealed a significant thermal effect of the groundwater flow and its critical role in the palsas segmentation and rapid collapse. We have investigated a regulating effect of micromorphological features of palsa mounds such as heights, slope, depressions, and mire mineral bed through groundwater drainage. As a result, two new scenarios for the palsa degradation process have been developed, emphasizing the influence of environmental factors on the permafrost condition.

期刊论文 2025-04-06 DOI: 10.1002/ppp.2276 ISSN: 1045-6740

Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T. semipenetrans and assess their impact on citrus plant growth. A total of 107 bacterial strains were isolated from the soil and roots of infested citrus trees. Among these, five strains exhibited significant nematicidal activity against T. semipenetrans. Four bacterial densities were tested for each strain: 3.6 x 10(5), 2.5 x 10(4), 3.6 x 10(3), and 1.2 x 10(3) cells/ml. These strains were tested both individually and in combination to evaluate their efficacy. The five strains were identified as Variovorax paradoxus, Bacillus pseudomycoides, Bacillus simplex, Bacillus cereus, and Paracoccus speluncae based on physiological, biochemical, and molecular (16S rRNA gene sequences) analyses. Juvenile mortality (J2s) and egg hatching inhibition were positively correlated with bacterial concentration and exposure duration. The highest juvenile mortality (100%) was observed with a combination of all five bacteria (3.6 x 10(5) cells/ml) after 96 h, while B. cereus alone achieved 98.98% mortality. The maximum nematicidal activities of the bacterial filtrates were generally observed between the 4th and 6th days of incubation, coinciding with peak bacterial growth and biomass production. The selected isolates also demonstrated the ability to produce indole acetic acid and solubilize phosphorus. In greenhouse experiments, the five isolates reduced T. semipenetrans populations by up to 62.96% compared to the control. Additionally, all rhizosphere bacteria and their combination significantly enhanced plant growth parameters (p < 0.0001). Notably, P. speluncae BR21 has not previously been tested for nematicidal effects on any nematode, making this the first documented report of its nematicidal potential.

期刊论文 2025-03-04 DOI: 10.1007/s10123-025-00652-9 ISSN: 1139-6709

The Meloidogyne spp., commonly known as root-knot nematodes (RKN), are obligate sedentary endoparasites considered among the most damaging plant-parasitic nematodes globally. They harm crops by using parasitic proteins to alter host cell physiology, which promotes parasitism and reduces crop yield. Traditional RKN management, primarily through chemical control, negatively impacts the nutritional value, soil texture, and vegetable production, and poses risks to human health and the environment. An emerging eco-friendly and costeffective alternative is the use of plant growth-promoting microbes (PGPM)-mediated biological approaches. The PGPM enhances plant growth directly by solubilizing phosphorus and iron, fixing nitrogen, producing phytohormones, siderophores, and ammonia, or indirectly through competition, antibiosis, hydrogen cyanide, 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme, and exopolysaccharides (EPS) production. This review explores various RKN management strategies, emphasizing green biological approaches, their benefits and drawbacks, current commercial status and usage, and the underlying genes, challenges, and limitations associated with these methods.

期刊论文 2025-03-01 DOI: 10.1016/j.pmpp.2024.102548 ISSN: 0885-5765

The existence of dispersive clay soils can cause serious erosion, void, and structural damage due to an imbalance of the electrochemical forces within the particles, which causes the soil particles to be repulsive instead of being attracted to each other. Dispersivity is observed in several highway embankments in Mississippi, and the embankments have eroded and developed voids over time. The current study investigated the root cause of the voids observed within the subgrade of the state highway 477 in Mississippi and evaluated the dispersivity of high cations-based soil. As part of an investigative initiative, a 2D Ground Penetration Radar (GPR) of the highway embankment road to make a 2D profile of the soil subsurface media was surveyed to reveal that potential hotspots were overlooked, leading to suspected soil dispersivity and subsequent issues. To assess the extent of visible voids and sinkholes, dispersive tests, including the Double Hydrometer Test (DHT), were conducted to evaluate the dispersivity of the clay soils. A series of boreholes were drilled along the roadway to collect the soil samples, determine their physical properties, and identify clay soil dispersity within the soil profile. Following the confirmation of dispersive soil existence through these tests, advanced analyses, such as Scanning Electron Microscope (SEM) to identify the microstructures and the ionic compositions of the soil particles and Toxicity Characteristic Leaching Procedure Tests (TCLPT) to assess the solubility of high concentrated elements in liquid, were performed to comprehend the root cause of the soil dispersion. Based on the results of the analysis, the GPR wave cannot pass through the subgrade, which mostly happens due to the presence of the charge within the soil. Based on SEM, DHT, and TCLP test results, the soil samples have high cations, including the presence of K + . Moreover, a similar distribution of the ionic compositions was observed among the majority of the soil samples; however, the percent of dispersion regarding clay soil particles varied.

期刊论文 2025-03-01 DOI: 10.1016/j.trgeo.2025.101531 ISSN: 2214-3912

Salt stress threatens global food security, and although plant growth-promoting rhizobacteria (PGPR) can boost plant resistance and productivity, their field effects are poorly understood. Therefore, this experimental trial explored the mechanisms of PGPR-induced salt stress resistance on ion homeostasis, the photosynthetic system, enzymatic activities, and rhizosphere diversity in rice. The study was conducted in the first week of May 2022, using rice (Tongxi 945) seeds, which were pelleted at the seedling nursery and cultivated in the field under salinity conditions (0.5 and 2.35 g kg- 1) with (+) or without (-) PGPR treatment. Na+/K+ concentrations, photosynthetic, leaf water potential, enzymatic activities, and changes in rhizosphere microorganisms were measured at the heading stage of rice. The findings of this study revealed that salinity stress significantly increased Na+ concentrations in leaves (257.70%), the leaf Na+/K+ ratio (567.96%), and leaf water potential (63.47%) while markedly reducing the net photosynthetic rate (71.72%), stomatal conductance (81.36%), thousand-grain weight (2.22%), and yield (114.15%). However, the application of PGPR mitigated the adverse effects of salinity stress by reducing Na+ concentrations in roots (45.22%) and leaves (26.20%), the root Na+/K+ ratio (64.68%), and leaf water potential (31.39%). PGPR also significantly improved the net photosynthetic rate (29.75%), stomatal conductance (46.89%), transpiration rate (25.56%), and chlorophyll content (11.95%). Applying PGPR significantly enhanced antioxidant enzyme activity, regulated carbon metabolism, increased microbial diversity in rhizosphere soil, and boosted the abundance of dominant fungal genera, alleviating salt stress damage to rice. Overall, PGPR improves microbial diversity, photosynthesis, and enzyme activities, mitigating salt stress effects. Further research is necessary to implement these findings in agriculture and evaluate their long-term impacts on crop productivity and soil health.

期刊论文 2025-03-01 DOI: 10.1016/j.rhisph.2025.101043
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共52条,6页