Characterizing permafrost is crucial for understanding the fate of arctic and subarctic archaeological archives under climate change. The loss of bio-physical integrity of archaeological sites in northern regions is still poorly documented, even though discontinuous permafrost is particularly vulnerable to global warming. In this study, we documented the spatial distribution of the permafrost-supported Inuit archaeological site Oakes Bay 1 on Dog Island (Labrador, Canada) while employing a novel approach in northern geoarchaeology based on non-invasive geophysical methods. ERT and GPR were successfully used to estimate active layer thickness and image permafrost spatial variability and characteristics. The results made it possible to reconstruct a conceptual model of the current geocryological context of the subsurface in relation to the site topography, hydrology, and geomorphology. The peripherical walls of Inuit semi-subterranean sod houses were found to contain ice-rich permafrost, whereas their central depressions were identified as sources of vertical permafrost degradation. The geophysical investigations were used to classify the permafrost at Oakes Bay 1 as climate-driven, ecosystem-protected permafrost that cannot regenerate under current climate conditions. This work highlights how the permafrost at Oakes Bay 1 is currently affected by multi-point thermal degradation by both conduction and advection, which makes it highly sensitive to climate warming.
Microorganisms that are halophilic and halotolerant have gradually developed unique structures, physiologies, and genomes to survive. They are essential for ecological restoration and pollution control. This review emphasizes the critical role of halophilic and halotolerant microorganisms in plant stress tolerance, the ability to degrade a wide range of organic pollutants, the potential for cultural heritage conservation and restoration, and the impact on the spread of resistance genes. Halophilic and halotolerant microorganisms tolerate salt by controlling osmotic pressure in the cytoplasm via one of two major mechanisms: compatible solute accumulation or inorganic ion accumulation. Besides, the ability of halophilic and halotolerant microorganisms to survive high salt concentrations is also related to enzymatic proteins with fascinating physicochemical and structural properties. The advantage of halophilic enzymes is their ability to maintain enzyme stability and activity under high salt concentrations and organic reagents. The review of halophilic and halotolerant microorganisms is critically valuable for the reclamation of saline lands and pollutant degradation in highly saline environments.
Permafrost distribution is of great significance for the study of climate, ecology, hydrology, and infrastructure construction in high-cold mountain regions with complex topography. Therefore, updated high-resolution permafrost distribution mapping is necessary and highly demanded in related fields. This case study conducted in a small catchment in the northeast of the Qinghai Tibet Plateau proposes a new method of using ground-penetrating radar (GPR) to detect the stratigraphic structure, interpret the characteristics of frozen ground, and extract the boundaries of permafrost patches in mountain areas. Thus, an empirical-statistical model of mountain frozen ground zonation, along with aspect (ASP) adjustment, is established based on the results of the GPR data interpretation. The spatial mapping of the frozen ground based on this model is compared with a field survey dataset and two existing permafrost distribution maps, and their consistencies are all higher than 80. In addition, the new map provides more details on the distribution of frozen ground. In this case, the influence of ASP on the distribution of permafrost in mountain areas is revealed: the adjustment of ASP on the lower limit of continuous and discontinuous permafrost is 180-200 m, the difference in the annual mean ground temperature between sunny and shady slopes is up to 1.4-1.6 degrees C, and the altitude-related temperature variation and uneven distribution of solar radiation in different ASPs comprehensively affect the zonation of mountain frozen ground. This work supplements the traditional theory of mountain permafrost zonation, the results of which are of value to relevant scientific studies and instructive to engineering construction in this region.
Investigations into the susceptibility of permafrost landscapes response to thermokarst can be performed using various approaches, depending on the scale of investigation. In many cases, point-based field measurements are extrapolated to larger scales and vice versa. The integration of scales often requires some form of ground control in addition to remote sensing surveys, which are at times exclusively conducted. As upscaling from discrete field measurements can provide spatial coverage and landscape-scale significance, downscaling from remote sensing can offer insight into processes and serve as calibration or verification. Here we present a multiple-scale evaluation of an area initially interpreted as a relict active layer detachment slide (before 1950) on Melville Island in the High Arctic, where differential interferometric synthetic aperture radar (DInSAR) showed subsidence between 2013 and 2015. Ground-based, cryostratigraphy measurements were combined with ground-penetrating radar (GPR) to investigate permafrost ice-content. The results indicate greater subsidence within the relict active layer detachment as detected by DInSAR. GPR surveys and permafrost coring indicated the presence of an ice-rich or massive ice layer near the base of the active layer in this area. In addition, cryostratigraphic evidences of thaw unconformity and of massive ice depth helped validate the interpretations of the geomorphology in the active layer detachment. This combination of methods indicated a localized and inherited landform-subsidence association, which brought further insight into the interpretation of DInSAR subsidence data. The framework presented in this study demonstrates the importance of site-specific investigations of thermokarst signal in order to understand the processes behind the remote sensing results. (C) 2020 Elsevier B.V. All rights reserved.
The subsurface structure of permafrost is of high significance to forecast landscape dynamics and the engineering stability of infrastructure under human impacts and climate warming, which is a modern challenge for Arctic communities. Application of the non-destructive method of geo-penetrating radar (GPR) survey is a promising way to study it. The study program, which could be used for planning and monitoring of measures of adaptation of Arctic communities to environmental changes is provided in this paper. The main principle was to use etalons of coupled radargrams and archive geological data to interpret changes in the permafrost structure from a grid of 5-10 m deep GPR transects. Here, we show the application of GPR to reconstruct and predict hazards of activation of cryogenic processes from the spatial variability in the structure of permafrost. The cumulative effects of the village and climate change on permafrost were manifested in changes in the active layer thickness from 0.5-1.0 m to up to 3.5 m. Despite that the permafrost degradation has declined due to the improved maintenance of infrastructure and the effects of ground filling application, the hazards of heaving and thermokarst remain for the built-up area in Lorino.
Climate warming has been observed for some time in the permafrost regions on the Qinghai-Tibet Plateau (QTP), China, resulting in active layer thickening, shrinkage or expansion of thermokarst lakes, and reduced permafrost extent. Little is known, however, about the hydrological processes near thermokarst lakes and their influences on lake development. We employed ground-penetrating radar (GPR) profiling, topographic mapping and drilling to explore the interaction between hydrological processes and thermokarst lake development at a site on the QTP. The GPR data and borehole water-level measurements revealed spatio-temporal variation of the frost table and soil water storage, and indicated the main direction of subsurface flow through soil on hillslopes near the lake. The measurements hinted at the self-organised formation of lateral flow channels at the thawing frost table near the lake. The ensuing recharge of the lake is balanced by drainage from the deepest end of the lake, down the topographic gradient, as ascertained by coring and lake bed mapping. Such a process-based qualitative understanding is crucial for assessing the impact of climate change, in conjunction with the local topography and hydrogeology, on the evolution of thermokarst lakes on the QTP. Copyright (c) 2014 John Wiley & Sons, Ltd.