Bats are indispensable members of the natural world, supporting its delicate balance. Bats have vital roles in controlling insect populations and enhancing soil fertility. They also help in the harvesting and dispersal of seeds, pollination in plants, and nutrient recycling and distribution. However, through evolution over millions of years, they have also adapted their immune system so that they may carry numerous types of pathogens, the majority of which are viruses, without these pathogens having any serious ill effects on bats themselves. Their anatomical adaptation to flight and the reduced immune response to DNA damage during flight have also contributed to bats becoming reservoirs of deadly pathogenic diseases. This review discusses the different adaptations of bats with a special focus on the immune system that have helped them evolve as a reservoir for various viruses. The study also enumerates how the increase in global warming, the consequent changes in climatic conditions, habitat destruction, and bushmeat consumption increase the chances of an outbreak of novel zoonotic disease when humans come in contact with bats.
Alpine treelines ecotones are critical ecological transition zones and are highly sensitive to global warming. However, the impact of climate on the distribution of treeline trees is not yet fully understood as this distribution may also be affected by other factors. Here, we used high-resolution satellite images with climatic and topographic variables to study changes in treeline tree distribution in the alpine treeline ecotone of the Changbai Mountain for the years 2002, 2010, 2017, and 2021. This study employed the Geodetector method to analyze how interactions between climatic and topographic factors influence the expansion of Betula ermanii on different aspect slopes. Over the past 20 years, B. ermanii, the only tree species in the Changbai Mountain tundra zone, had its highest expansion rate from 2017 to 2021 across all the years studied, approaching 2.38% per year. In 2021, B. ermanii reached its uppermost elevations of 2224 m on the western aspects and 2223 m on the northern aspects, which are the predominant aspects it occupies. We also observed a notable increase in the distribution of B. ermanii on steeper slopes (> 15 degrees) between 2002 and 2021. Moreover, we found that interactions between climate and topographic factors played a more significant role in B. ermanii's expansion than any single dominant factor. Our results suggest that the interaction between topographic wetness index and the coldest month precipitation (Pre(1)), contributing 91% of the observed variability, primarily drove the expansion on the southern aspect by maintaining soil moisture, providing snowpack thermal insulation which enhanced soil temperatures, decomposition, and nutrient release in harsh conditions. On the northern aspect, the interaction between elevation and mean temperature of the warmest month explained 80% of the expansion. Meanwhile, the interaction between Pre(1) and mean temperature of the growing season explained 73% of the expansion on the western aspect. This study revealed that dominant factors driving treeline upward movement vary across different mountain aspects. Climate and topography play significant roles in determining tree distribution in the alpine treeline ecotone. This knowledge helps better understand and forecast treeline dynamics in response to global climate change.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm). The study also explored how varying Na-CMC/AAm ratio and radiation dose influence their swelling behaviour, gel fraction, and water retention. FTIR showed that CMC and PAAm components are part of the hydrogel structure. The equilibrium swelling reached a maximum value of similar to 500 g/g at a Na-CMC/AAm ratio of 60/40. High content of AAm reduced swelling because it caused increased hydrophobicity while high radiation doses up to 50 kGy increased crosslinking resulting in improved but limited swelling from 65 to 85 (g/g). After the second cycle, KOH modification reached maximum swelling capacity by introducing anionic carboxylate groups up to 415 (g/g). SEM images revealed uniform pores in an unmodified scaffold while larger cavities were formed upon modification facilitating Water absorption. Surprisingly, the improved hydrogels retained more water: about 75% even after 16 days as opposed to a 50% drop within five days in the case of unmodified ones. This hydrogel significantly enhanced shoot length by 18%, root length by 32%, fresh weight shoot by 15%, and dry weight shoot by 15% under severe drought conditions. As a result, yield increased by 22%, proteins went up by 19%, and carbohydrates rose by 13%. Leaf chlorophyll content increased with a corresponding decline in stress enzymes indicating decreased oxidative damage. This eco-friendly Na-CMC/PAAm-based hydrogel seems to have potential use for addressing water scarcity and agricultural challenges.
Global climate change and permafrost degradation have significantly heightened the risk of geological hazards in high-altitude cold regions, resulting in severe casualties and property damage, particularly in the Qinghai-Tibet Plateau of China. To mitigate the risk of geological disasters, it is crucial to identify the primary disaster-inducing factors. Therefore, to address this issue more effectively, this study proposes a spatiotemporal-scale approach for detecting disaster-inducing factors and investigates the disaster-inducing factors of geological hazards in high-altitude cold regions, using the Kanchenjunga Basin as a case study. As the world's third-highest peak, Kanchenjunga is highly sensitive to climate fluctuations. This study first integrates the frost heave model and multitemporal interferometric synthetic aperture radar techniques to monitor ascending and descending track line-of-sight deformation of the frozen active layer in the study area. Subsequently, the surface parallel flow constrained model is employed to decompose the 3-D time-series deformation of geological hazards in the basin, with remote sensing imagery and field surveys used to identify a total of 94 disaster sites. In parallel, a database of potential conditioning factors is constructed by leveraging Google Earth Engine remote sensing inversion technology and relevant data provided by the China Geological Survey. Finally, by integrating monitoring results with a database of potential geological conditioning factors, the spatiotemporal-scale approach for detecting disaster-inducing factors proposed in this study is applied to investigate the disaster-inducing factors in the Kanchenjunga Basin. The research results highlight that surface temperature is the primary driving factor of geological hazards in the Kanchenjunga Basin. This research helps bridge the data gap in the region and offers critical support for local government decision-making in disaster prevention, risk assessment, and related areas.
We review the progress of research on permafrost and periglacial dynamics over the last two decades and explore future periglacial landscapes in Svalbard, High Arctic. This area has been subjected to rapid air and ground warming at a rate of 0.10.2 degrees C yr-1, as well as simultaneous thawing of the top layer of permafrost at a rate of about 1 cm yr-1 over the last two decades. Periglacial features studied include ice-wedge polygons, mudboils, sorted patterned ground, pingos, solifluction lobes, active-layer detachment slides, and rock glaciers. These landforms are concentrated within narrow alluvial plains and valley-side slopes but separated by geomorphological specifics and ground materials. Decadal-scale monitoring highlights climatic control of the morphology and dynamics of three landforms & horbar;ice-wedge polygons, mudboils, and rock glaciers & horbar;and the impact of long-term warming on their dynamics. Despite the location close to the southern limit of continuous permafrost, multiple cold spells in mid-winter activate thermal contraction cracking, which permits the growth of ice wedges. If such cold spells continue under a warmer climate, ice wedge could still grow below the deepening active layer. In a mudboil-small polygon landscape, seasonal frost heaving (or thaw settlement) of the central mound is coupled with closing (or opening) of the marginal crack. This movement would be maintained under a warmer climate and at a deeper active layer if the active layer is kept very humid. Although the contemporary cold climate is generally unfavorable for the growth of well-developed rock glaciers in Svalbard, slow permafrost creep at a rate of a few centimeters per year produces basal bulging of the valley-side talus slopes. The warming trend in the last decade has led to a steady acceleration of the movement. Further warming in the near future is expected to develop longer valley-side rock glaciers.
Permafrost in marine sediments exhibits a lower freezing point and significant unfrozen water content. This paper investigates the role of the soil freezing characteristic curve (SFCC) in permafrost degradation. Three SFCCs, representing thawing-freezing characteristics of soils with varying clay content and salinity, were established based on experiments and existing data. These SFCCs were then applied in numerical analyses to simulate permafrost thawing under various warming scenarios, using measured ground temperatures and permafrost profiles for a site at Longyearbyen in Svalbard (Norway). It is shown that the ground temperature in non-saline permafrost soil increases more rapidly than saline permafrost, due to a greater downward net heat flux to the permafrost in the former case. Conversely, the thawing rate is more pronounced for saline permafrost soil, attributed to its lower freezing point and latent heat consumption. A more nonlinear ice-melting process is observed for permafrost soil with a lower salinity. The temperature rise follows three stages: a constant-rising, a damp-rising, and an accelerated-rising rates. The duration of the damp-rising rate becomes shorter for saline permafrost under a great warming condition. The study underscores the high significance of the soil-freezing characteristic curve for accurate estimations of permafrost degradation.
This study analyzes the forest flammability hazard in the south of Tyumen Oblast (Western Siberia, Russia) and identifies variation patterns in fire areas depending on weather and climate characteristics in 2008-2023. Using correlation analysis, we proved that the area of forest fires is primarily affected by maximum temperature, relative air humidity, and the amount of precipitation, as well as by global climate change associated with an increase in carbon dioxide in the atmosphere and the maximum height of snow cover. As a rule, a year before the period of severe forest fires in the south of Tyumen Oblast, the height of snow cover is insignificant, which leads to insufficient soil moisture in the following spring, less or no time for the vegetation to enter the vegetative phase, and the forest leaf floor remaining dry and easily flammable, which contributes to an increase in the fire area. According to the estimates of the CMIP6 project climate models under the SSP2-4.5 scenario, by the end of the 21st century, a gradual increase in the number of summer temperatures above 35 degrees C is expected, whereas the extreme SSP5-8.5 scenario forecasts the tripling in the number of such hot days. The forecast shows an increase of fire hazardous conditions in the south of Tyumen Oblast by the late 21st century, which should be taken into account in the territory's economic development.
Context or problem: Most of the research evaluating rice varieties, a major global staple food, for greenhouse gas (GHG) mitigation has been conducted under continuous flooding. However, intermittent irrigation practices are expanding across the globe to address water shortages, which could alter emissions of methane (CH4) compared to nitrous oxide (N2O) for reducing overall global warming potential (GWP). To develop climate-smart rice production systems, it is critical to identify rice varieties that simultaneously reduce CH4 and N2O emissions while maintaining crop productivity under intermittent irrigation. Objective: This study assessed CH4 and N2O emissions, grain yield, and GWP of four rice varieties cultivated under intermittent irrigation in Colombia. Methods: Four common commercial rice varieties were evaluated over two seasons-wet and dry in 2020 and 2021-in two Colombian regions (Tolima and Casanare). Results: Wet-season crop productivity was similar among varieties. However, F68 in Tolima and F-Itagua in Casanare significantly reduced yields in the dry season, likely due to periods of crop water stress. Overall, CH4 emissions and GWP were relatively low due to frequent field drainage events, with GWP ranging from 349 to 4704 kg CO2 equivalents ha(-1). Accordingly, N2O emissions contributed 73% to GWP across locations, as wet-dry cycles can increase N2O emissions, creating a tradeoff for GWP when reducing CH4 through drainage. Varieties F67 in Tolima and F-Itagua in Casanare significantly reduced GWP by 32-61% across seasons, primarily by decreasing N2O rather than CH4 emissions. Conclusions: Rice varietal selection achieved significant GWP mitigation with limited impacts on grain yield, mainly due to reduced N2O emissions under non-continuously flooded irrigation. Implications/significance: This research underscores the critical role of rice varietal selection in addressing global climate-change and water-scarcity challenges, which drive the adoption of intermittent irrigation practices. By focusing on reducing N2O emissions through appropriate variety selection, this study provides valuable insights for rice systems worldwide that are adapting to these pressing environmental challenges.
The degradation of permafrost in the Northern Hemisphere is expected to persist and potentially worsen as the climate continues to warm. Thawing permafrost results in the decomposition of organic matter frozen in the ground, which stores large amounts of soil organic carbon (SOC), leading to carbon being emitted into the atmosphere in the form of carbon dioxide and methane. This process could potentially contribute to positive feedback between global climate change and permafrost carbon emissions. Accurate projections of permafrost thawing are key to improving our estimates of the global carbon budget and future climate change. Using data from the latest generation of climate models (CMIP6), this paper explores the challenges involved in assessing the annual active layer thickness (ALT), defined as the maximum annual thaw depth of permafrost, and estimated carbon released under various Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). We find that the ALT estimates derived from CMIP6 model soil temperatures show significant deviations from the observed ALT values. This could lead to inconsistent estimates of carbon release under climate change. We propose a simplified approach to improve the estimate of the changes in ALT under future climate projections. These predicted ALT changes, combined with present-day observations, are used to estimate vulnerable carbon under future climate projections. CMIP6 models project ALT changes of 0.1-0.3 m per degree rise in local temperature, resulting in an average deepening of approx. 1.2-2.1 m in the northern high latitudes under different scenarios. With increasing temperatures, permafrost thawing starts in Southern Siberia, Northern Canada, and Alaska, progressively extending towards the North Pole by the end of the century under high emissions scenarios (SSP5-8.5). Using projections of ALT changes and vertically resolved SOC data, we estimate the ensemble mean of decomposable carbon stocks in thawed permafrost to be approximately 115 GtC (gigatons of carbon in the form of CO2 and CH4) under SSP1-2.6, 180 GtC under SSP2-4.5, 260 GtC under SSP3-7.0, and 300 GtC under SSP5-8.5 by the end of the century.
Arctic fjords are hotspots of marine carbon burial, with diatoms playing an essential role in the biological carbon pump. Under the background of global warming, the proportion of diatoms in total phytoplankton communities has been declining in many high-latitude fjords due to increased turbidity and oligotrophication resulting from glacier melting. However, due to the habitat heterogeneity among Svalbard fjords, diatom responses to glacier melting are also expected to be complex, which will further lead to changes in the biological carbon pumping and carbon sequestration. To address the complexity, three short sediment cores were collected from three contrasting fjords in Svalbard (Krossfjorden, Kongsfjorden, Gronfjorden), recording the history of fjord changes in recent decades during significant glacier melting. The amino acid molecular indicators in cores K4 and KF1 suggested similar organic matter degradation states between these two sites. In contrast to the turbid Kongsfjorden and Gronfjorden, preserved fucoxanthin in Krossfjorden indicated a continuous increase in diatoms since the mid-1980s, corresponding to a 59 % increase in biological carbon pumping, as quantified by the delta C-13 of sedimentary organic carbon. The increasing biological carbon pumping in Krossfjorden is further attributed to its hard rock types in the glacier basin, compared to Kongsfjorden and Gronfjorden, which are instead covered by soft rocks, as confirmed by a one-dimensional model. Given the distribution of rock types among basins in Svalbard, we extrapolate our findings and propose that approximately one-fifth of Svalbard's fjords, especially those with hard rock basins and persistent marine-terminated glaciers, still have the potential for an increase in diatom fractions and efficient biological carbon pumping. Our findings reveal the complexity of fjord phytoplankton responses and biological carbon pumping to increasing glacier melting, and underscore the necessity of modifying Arctic marine carbon feedback to climate change based on results from fjords underlain by hard rocks.