Rapid urbanization and industrial growth in China have increased brownfield site reclamation, the sustainable remediation for urban transformation and enhancing ecosystem services. However, traditional brownfield safety assessment strategies impose unnecessary costs since excessive remediation. Herein, a comprehensive system integrated by soil self-purification, potential ecological risks and human health risks is developed to investigate the safety of brownfield sites. Indices, including soil environmental loading capacity (SELC), and Nemerow integrated pollution index (NIPI), were introduced to assess heavy metals (HMs) pollution. Results show that 72.05% of the sites are identified as moderate pollution, where Cd, As, and Cr(VI) are at heavy pollution, incorporating soil self-purification. The average values of potential ecological risk (PERI) reached 6615.00, posing a significant damage to the local ecosystem, and Cd was identified as main ecological hazards in the study sites. Furthermore, the health risk assessment shows that children's health risks are higher than that of adults, with non-carcinogenic risk to children (2.60) and adults (0.41), and carcinogenic risk to children (2.30 x 10-3) and adults (1.12 x 10-4). Utilizing a multi-index decision-making approach, it is determined that 19.30% of the site exhibit high-risk values, between concentration screening (11.40%) and risk screening (83.30%) base on single-indices. The study sheds light on the comprehensive assessment of brownfield site safety.
Industrial development has caused significant environmental damage, especially through potentially toxic element (PTE) pollution. Combining pollution indices, health risk assessment, spatial autocorrelation (Moran's I), and receptor modeling (APCS/MLR), this study quantified sources and risks of heavy metals in smelting-adjacent farmland soils, facilitating targeted PTE pollution mitigation. Soil analysis revealed significantly elevated mean concentrations of As (326 mg/kg), Cd (23 mg/kg), Cr (104 mg/kg), Cu (106 mg/kg), Ni (73 mg/kg), Pb (274 mg/kg), and Zn (660 mg/kg), all exceeding Yunnan provincial background values. The average total non-carcinogenic risk index (HIadult = 2, HIchild = 11) and total carcinogenic risk index (TCRadult = 5.52 x 10-4, TCRChild = 6.44 x 10-4) for both adults and children exceeded the threshold (HI = 1, TCR = 1 x 10-04). The results of environmental pollution evaluation show that the overall pollution in the study area is a heavy pollution level. The ACPS-MLR model showed that Cd and Zn in soil mainly came from industrial activities (37%). Cu and Pb were derived from motor vehicle emissions and agricultural activities (20%). As may be derived from agricultural and industrial activities. Furthermore, based on the combination of source apportionalization and the spatial distribution of environmental pollution, the northeastern part of the study area and transportation hubs are the key pollution areas and need to be given priority for treatment. PTEs accumulate in the soil, will be enriched through the food chain, and seriously threaten human health and soil ecological environment. Therefore, this study can provide a basis for identifying, preventing, and controlling the risk of PTEs pollution in soil.
Currently, there is a growing concern for human health with the rise of environmental pollution. Water contamination and health problems had been understood. Sanitation-related health issues have been overcome in the greater part of the world. Progressive industrialization has caused a number of new pollutants in water and in the atmosphere. It is a growing concern for the human health, especially upon the reproductive health. Current researchers provide a strong association between the rising concentrations of ambient pollutants and the adverse health impact. Furthermore, the pollutants have the adverse effects upon reproductive health as well. Major concern is for the health of a pregnant woman and her baby. Maternal-fetal inflammatory response due to the pollutants affects the pregnancy outcome adversely. Preterm labor, fetal growth restriction, intrauterine fetal death, and stillbirths have been observed. Varieties of pathological processes including inflammation, endocrine dysfunction, epigenetic changes, oxidative and nitrosative stress, and placental dysfunction have been explained as the biological plausibility. Prospective studies (systematic review and meta-analysis) have established that exposure to particulate matters (PM) and the nanoparticles (NP) leads to excessive oxidative changes to cause DNA mutations, lipid peroxidation and protein oxidation. Progressive industrialization and emergence of heavy metals, micro- (MP) and nanoparticles (NP) in the atmosphere and in water are the cause for concern. However, most of the information is based on studies from industrialized countries. India needs its own country-based study to have the exact idea and to develop the mechanistic pathways for the control.
Wildfires, both natural and man-made, release and mobilize hazardous substances such as heavy metal(loids) (HM), which are known carcinogens. Following intense rainfall events, HM bound to soil organic matter are transported from the soil to surface water, resulting in water quality degradation. This study reviews the pollution status of HM in wildfire-affected soil and surface water, as well as their toxic effects on aquatic organisms and humans. The rate of HM release during wildfires depends on factors such as the type of tree burned and fire severity. The mobility of HM from soil to surface water is influenced by soil pH, organic matter content, rainfall intensity, and duration. The risk priority number (RPN) analysis indicates that both wildfire-affected soil and surface water require remediation to address HM contamination. HM concentrations in both soil and surface water decrease over time due to soil erosion, wind, storm events, and the depletion of burnt residues. The greatest percentage changes in HM concentrations in burned soils compared to unburned soils were observed for vanadium (340%), nickel (260%), and arsenic (110%). In surface water, the highest increases were seen for iron (740%), vanadium (530%), and aluminium (510%). Wildfire-affected water has been shown to cause toxic effects in aquatic organisms, including DNA damage, oxidative stress, and lipid peroxidation. The consumption of HMcontaminated water and fish poses significant health risks to humans. Therefore, post-fire monitoring of wildfireaffected areas is essential for designing treatment plants, assessing risks, and establishing maximum allowable HM concentrations in water.
Cadmium (Cd) is a pervasive environmental and industrial toxin that poses significant health risks. It readily moves through soil-plant systems, leading to global contamination and human exposure through diet, smoking, and pollution. The main purpose of this review is to explore the effect of Cd on physiological processes of different bodies' organs, including the bones, kidneys, and liver, as well as the immune, cerebrovascular, cardiovascular, and reproductive systems. Accumulation of Cd in the body can result in poisoning with severe impacts on bone and kidney health, as well as reduced bone mineral density due to renal damage. Research has linked Cd to lung cancer and pulmonary toxicity, and elevated urinary biomarkers suggest compromised renal function. Cd also affects the cardiovascular, cerebrovascular, and immune systems; the liver; and reproductive systems, contributing to various diseases by disrupting blood pressure and calcium regulation, causing oxidative stress and DNA damage, and impairing cell functions. Ongoing research is essential to fully understand Cd-induced toxicological effects and to develop effective interventions to prevent exposure and mitigate health risks.
The presence of microplastics in the environment has increased due to anthropogenic activities; it is estimated that 15 million kilograms of plastic waste accumulate in the ocean annually. Pollution permeates every inch of the ocean from microplastics in the food chain to plastic water bottles floating on the surface. This monolith of ocean pollution is made up of all kinds of marine debris and contains 1.8 trillion pieces of plastic, covering an area twice the size of Texas. The objective of this review is to show advances in the study of emerging problems, specifically in the presence of microplastics in water and soil and their potential effects on health. In addition, microplastics have synergy with residual contaminants that exist in the water such as textile waste, organic matter, pathogens, etc. This causes damage to aquatic organisms as it makes nutrient transfer more complex in many of these species. There is a report that estimates that liabilities related to plastic pollution will cost the industry 100,000 million dollars due to lawsuits for damages and losses, of which 20,000 million will occur in the United States. The study of the presence of microplastics in the environment can generate indicators of the current effect to generate public policies that try to control the growth of this pollutant in the environment. It is important to discuss all the routes of generation of microplastics, distribution, and cosmetics involved in fast fashion with glitter and to evaluate the physical, chemical, biological, and toxicological effects on the environment, proposing the path and future to be followed regarding this research topic.
Alongside oil and natural gas, coal is the most abundant non-renewable fossil fuel resource currently utilised worldwide. Although continuous efforts have been made in recent decades to replace the use of coal with various alternative energy sources (hydro, nuclear, wind, solar), coal is expected to remain the most important source of heat and electricity in the world for the foreseeable future. Despite the undeniable importance of coal to the world, its use causes serious damage to the environment and human health. In this lecture text, the destructive effects of coal mining and its utilisation on the environment (air, soil and water pollution, loss of forests, destruction of habitats, noise pollution, dust, vibrations, chemical leaks, erosion, sedimentation, abandonment of coal mining sites) will be discussed in detail. Particular attention is paid to the health effects of coal use (respiratory effects, cardiovascular damage, cancer and other chronic diseases, reproductive health, neurological degeneration, mental health and social damage, radiation sickness, etc.).
The excessive use of pesticides in agriculture causes problems related to public health; biodiversity; the contamination of water bodies, soil and air; and general environmental degradation, including interactions with climate change effects. The aim of this work was to describe the patterns of pesticide use in 17 Latin American countries and their associations with the total harvested area and the harvested areas of the five main crops on the basis of statistics reported by the Food and Agriculture Organization from 1990 to 2021. Principal component analysis (PCA) revealed four different patterns among countries according to the magnitude of pesticide application: Brazil (G1) > Argentina (G2) > Colombia and Mexico (G3) > Central and South America (G4). Together, more than 1.2 million tons of active ingredients is applied annually, carrying harmful effects and risks. In the joint analysis of both datasets (applied pesticides and harvested area), different correlations were observed between the amount of pesticides applied and the harvested area; for example, in G1 and G2, positive and significant correlations were detected between the applied amounts of total pesticides, herbicides, insecticides and bactericides and the total area harvested by the main crop, but in G3, there was a negative correlation with the five main crops.
The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of micro- contaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.
The use of cosmetic products is expanding globally, and with it, so is the range of chemical substances employed in their production. As a result, there is also a higher risk of intoxication, allergic reactions, prolonged chemical exposure, adverse effects, and indiscriminate use. Cosmetic products can contain more than 10,000 ingredients. Most users of synthetic cosmetics are unaware of the harmful effects if they even are. However, it is linked to many diseases like cancer, congenital disabilities, reproductive impairments, developmental systems, contact dermatitis, hair loss, lung damage, old age, skin diseases and reactions, allergies, and harm to human nails. Many beauty products also create a high demand for natural oils, leading to extensive and intensive cultivation, harming natural habitats through deforestation, and contaminating soil and water through pesticides and fertilizers. The adverse effects of hazardous substances in synthetic cosmetics extend beyond human health and influence ecosystems, air quality, and oceans. Thus, this review aims to assess the environmental and health impacts of cosmetics using published scientific articles. The study used a systematic review based on Scopus, Science Direct, Web databases, Scholar Google, and PubMed. The results of this review showed that the formulation of cosmetics until the disposal of their containers could adversely affect environmental and human health.