This study presents a new experimental procedure for evaluating the durability of stabilized soils subjected to multiple wetting and drying (W-D) cycles. An integrated experimental program combining dynamic shear rheometer (DSR) testing with W-D cycles was designed and implemented to assess moisture-induced performance degradation in natural sand stabilized with two types of rapid-setting cementitious stabilizers. Small cylindrical specimens (10.5 mm in diameter and 35.0 mm in height) of stabilized sand mixes were compacted, cured, and subjected to up to seven W-D cycles. Each W-D cycle was meticulously controlled to gauge its impact on the material's durability. The mechanical properties of the stabilized samples were evaluated at different stages of the W-D cycles using the strain-sweep DSR testing based on a methodology developed from preliminary work. The proposed test method focuses on the shear properties of the material, measuring its mechanical response under the torsional loading of a cylindrical sample and providing dynamic mechanical properties and fatigue-resistance characteristics of the stabilized soils under cyclic loading. Test results demonstrate water-induced deterioration of stiffness and reduced resistance to cyclic loading with good testing repeatability, efficiency, and material-specific sensitivity. By combining dynamic mechanical characterization with durability assessment, the new testing method provides a high potential as a simple, scientific, and efficient method for assessing, engineering, and developing stabilized soils, which will enable more resilient transportation infrastructure systems.
This review explores the influence of soil-structure interaction (SSI) on the seismic response of structures, employing Latent Dirichlet Allocation (LDA) to identify research trends and thematic clusters. Key topics include the dynamic response of buildings, nonlinear modeling approaches, soil-foundation interaction, and performance-based seismic evaluation. SSI significantly modifies structural behavior, influencing vibration characteristics, wave propagation, and energy dissipation. Building parameters, soil stiffness, and foundation type were identified as critical factors impacting seismic performance. Advanced nonlinear modeling techniques, such as finite element analysis and optimization algorithms, have enhanced the accuracy of SSI simulations, enabling detailed assessments of soil-structure dynamics and damage probabilities. Innovations like gravel-rubber mixtures for seismic isolation and tuned mass dampers integrated with SSI were highlighted for their effectiveness in mitigating seismic impacts. The review highlights the necessity of incorporating SSI into design frameworks to address dynamic amplification, site-specific conditions, and fragility variations. However, critical gaps remain, particularly in large-scale fragility modeling, multi-hazard assessments, and experimental validations. These gaps highlight the need for further integration of SSI effects into seismic risk analyses and design codes. Future research should prioritize multi-disciplinary approaches that bridge theoretical advancements and practical applications to enhance structural resilience in seismically active regions. This study provides a comprehensive foundation for advancing SSI-informed seismic design practices and improving the safety and sustainability of infrastructure.
A common physical technique assessed for improving expansive clays is by the addition of natural fibres to the soil. A good understanding of the impact of stabilisation using fibres on the clay soil's constituents, microfabric, and pore structure is, however, required. Mixtures of clay and fibre, regardless of type or extent, can never change the natural composition of the clay. Even the smallest part must still consist of spaces with clay with the original physical properties and mineralogy. This suggests that, although the mixture may show beneficial physical changes over the initial clay soil, its spatial attributes in terms of mineralogical characteristics, remain unchanged. This paper discusses some of the fundamentals that are not always adequately considered or addressed in expansive clay research, aiming to improve the focus of current and future research investigations. These include the process, mechanics, and implications of chemical and physical soil treatment as well as the concept of moisture equilibration.
This study conducted an experimental and numerical investigation on the stabilization of clayey subgrades using nano-silica and geogrid reinforcement. Nano-silica was incorporated in varying contents (0-4%) to assess its effects on Atterberg limits, compaction behavior, shear strength, and California bearing ratio. The results showed optimal performance at 2.5% nano-silica, with reduced plasticity index and enhanced dry density, cohesion, friction angle, and bearing capacity. A three-dimensional finite element model was developed to simulate subgrade behavior under cyclic loading, incorporating the effects of both nano-silica and geogrid layers. The model was calibrated using laboratory data to reflect observed settlement and stress distribution. The numerical results confirmed that nano-silica reduced settlement significantly up to the optimal content, while geogrid reinforcement further enhanced load distribution and reduced displacement. The combination of nano-silica and geogrid resulted in improved mechanical performance of the subgrade. These findings demonstrate the effectiveness of integrating chemical stabilization and mechanical reinforcement in clayey soils to improve structural capacity and reduce long-term deformation, providing a viable solution for pavement subgrade enhancement.
Sodium hydroxide (NaOH)-sodium silicate-GGBS (ground granulated blast furnace slag) effectively stabilises sulfate-bearing soils by controlling swelling and enhancing strength. However, its dynamic behaviour under cyclic loading remains poorly understood. This study employed GGBS activated by sodium silicate and sodium hydroxide to stabilise sulfate-bearing soils. The dynamic mechanical properties, mineralogy, and microstructure were investigated. The results showed that the permanent strain (epsilon(p)) of sodium hydroxide-sodium silicate-GGBS-stabilised soil, with a ratio of sodium silicate to GGBS ranging from 1:9 to 3:7 after soaking (0.74%-1.3%), was lower than that of soil stabilised with cement after soaking (2.06%). The resilient modulus (E-d) and energy dissipation (W) of sodium hydroxide-sodium silicate-GGBS-stabilised soil did not change as the ratio of sodium silicate to GGBS increased. Compared to cement (E-d = 2.58 MPa, W = 19.96 kJ/m(3)), sulfate-bearing soil stabilised with sodium hydroxide-sodium silicate-GGBS exhibited better E-d (4.84 MPa) and lower W (15.93 kJ/m(3)) at a ratio of sodium silicate to GGBS of 2:8. Ettringite was absent in sodium hydroxide-sodium silicate-GGBS-stabilised soils but dominated pore spaces in cement-stabilised soil after soaking. Microscopic defects caused by soil swelling were observed through microscopic analysis, which had a significant negative impact on the dynamic mechanical properties of sulfate-bearing soils. This affected the application of sulfate-bearing soil in geotechnical engineering.
This paper experimentally investigates the wave pressure and pore pressure within a sandy seabed around two pipelines under the action of random waves (currents). The experiments revealed that when the random wave plus current cases are compared with the random wave-only case, the forward current promotes wave propagation, whereas the reversed backward current inhibits wave propagation. Furthermore, the wave pressure on the downstream pipeline decreases as the relative spacing ratio increases and increases as the diameter increases. However, alterations in the relative spacing ratio or dimensions of the downstream pipeline exert a negligible influence on the wave pressure of the upstream pipeline. Moreover, the relative spacing ratio between the pipelines and the dimensions of the pipelines considerably influence the pore pressure in the sand bed. When the relative spacing ratio remains constant, increasing the downstream pipeline diameter will increase the pore-water pressure of the soil below the downstream pipeline.
The aim of this study was to solve the problems of low retention rate and poor grouting effect caused by the strong slurry fluidity of traditional cement-based grouting materials in deep backfill strata. Metakaolin-cement-based materials were used as raw materials to examine the dispersion of nano-boron carbide (B4C) using a laser particle size distribution instrument. Nano-B4C was used as a modifier to perform rheological and macroscopic mechanical tests. The effect of nano-B4C dispersion on the performance of the cement-based composite grouting materials was analyzed. The modified materials were further characterized via microscopic tests, and the grouting modification mechanism was revealed. The results showed that the agglomeration of nano-B4C with poor dispersion resulted in an increase in the fluidity of the grouting material, a decrease in viscosity, and a decrease in early strength. The well-dispersed nano-B4C effectively improved the viscosity and early strength of the grouting material and decreased the fluidity, and the change range increased with increasing nano-B4C content. The performance of the modified grouting material was superior to that of the traditional grouting material. The results present new solutions to problems, such as poor grouting effects in deep backfill soil strata.
The objective of the present study is to evaluate the performance of a levee when subjected to flooding and subsequent seepage through centrifuge model tests. For this, six centrifuge model tests were conducted on a 240 mm high levee model at 30g in a 4.5 m radius large beam geotechnical centrifuge available at the Indian Institute of Technology Bombay, India. A custom-developed flooding simulator is employed to induce identical flood rates on the upstream side of the levee models. Further, using (a) geocomposite (GC) and (b) sand-sandwiched geocomposite (SSGC) as internal chimney drain, the suitability of GC material for dissipation of pore-water pressure (PWP) is also studied. The results of the centrifuge tests are presented and discussed in terms of the development of upstream flood function, subsequent PWP development within the levee body, and the surface settlements observed at the levee's crest. Further, the influence of an internal chimney drain, the material used for its construction, and its type and composition on the seepage response of the levee is discussed in detail. The performance GC chimney drain placed within the levee subjected to flooding-induced seepage is compared with a conventional sand chimney drain. It is observed that a GC-based chimney drain with sand cushioning on both sides in the horizontal portion of the chimney drain performs well. Further, digital image analysis of SEM micrographs of exhumed GC after centrifuge tests and the analyzed PWP data during sustained flooding-induced seepage is found to corroborate well.
Almost all of the existing testing methods to determine elastic modulus of the soil or aggregate for pavement design involve the application of repetitive loads applied at a single point. This approach falls short of representing the conditions that are observed when the wheel of a vehicle rolls over the surface. This study presents a new methodology, in which light weight deflectometer (LWD) is used to apply three adjacent sequential loads repetitively to replicate a multipoint loading of the surface. The elastic modulus values obtained from these multipoint LWD tests were compared against the repetitive single point LWD test results. The multipoint LWD test elastic modulus values were consistently lower than the values obtained from the single point LWD tests. The single point LWD tests showed an increase in elastic modulus with increased load repetition. The multipoint LWD results did not show an increase in the elastic modulus as a function of repetitive loading. This study showed that damping ratio values provide guidance to explain differences in the elastic modulus with an increased number of load repetitions. In repetitive single point tests, the applied load caused initial compaction, and in multipoint LWD tests, it caused disturbance in the ground. With increased load cycles, the ground reached a stabilized condition in both tests. The methodology presented in this study appeared to minimize the unintended compaction of the ground during the single point LWD tests to determine the elastic modulus.
Shredded rubber from waste tyres has progressively been adopted in civil engineering due to its mechanical properties, transforming it from a troublesome waste into a valuable and low-cost resource within an eco-sustainable and circular economy. Granular soils mixed with shredded rubber can be used for lightweight backfills, liquefaction mitigation, and geotechnical dynamic isolation. Most studies have focused on sand-rubber mixtures. In contrast, few studies have been conducted on gravel-rubber mixtures (GRMs), primarily involving poorly-graded gravel. Poorly-graded gravel necessitates selecting grains of specific sizes; therefore, from a practical standpoint, it is of significant interest to examine the behaviour of well-graded gravel and shredded rubber mixtures (wgGRMs). This paper deals with wgGRMs. The results of drained triaxial compression tests on wgGRMs are analysed and compared with those on GRMs. Stress-strain paths toward the critical state and energy absorption properties are evaluated. The tested wgGRMs exhibit good shear strength and remarkable energy absorption properties; thus, they can be effectively utilised in several geotechnical applications.