共检索到 2

The climate in Northwest China (NWC) has undergone a warming and wetting trend (WWT) since the 1980s, which has attracted considerable attention from the scientific and policy communities. However, the majority of previous studies have focused on overall effects of WWT, and very few have examined how land surface system responds to climate warming or wetting trend, respectively. For this purpose, this study uses the Community Land Model (CLM5) driven by the Chinese Meteorological Forcing Dataset (CMFD) to conduct four modeling experiments: a control experiment (CTRL) and three sensitivity experiments, in which the annual trend of air temperature (NonWarm), precipitation (NonWet), and both (NonWWT) are removed from the CMFD from 1979 to 2018. Compared to CTRL, the land hydrological variables (i.e. soil moisture, runoff and evapotranspiration) show a visible reduction in magnitude, interannual variability, as well as annual trend in NonWet, while they are enhanced in NonWarm. In both NonWarm and NonWet, the magnitude and trend of both net radiation and sensible heat fluxes increase, with a more pronounced change in NonWWT. Further analysis indicates that the land surface processes are more sensitive to wetting trend than to warming trend. Among all land surface hydrological variables and energy variables, runoff and snow cover fraction are the most susceptible to climate change. Overall, the effects of climate change in Ta and Pr on surface hydrological variables are non-linearly offsetting, while the effects on surface energy budgets are non-linearly superimposed. Compared to warming trend, wetting trend plays a larger impact on the variability of land surface processes in NWC.

期刊论文 2024-10-01 DOI: 10.1088/1748-9326/ad70cd ISSN: 1748-9326

Complex interactions between the land surface and atmosphere and the exchange of water and energy have a significant impact on climate. The Tibetan Plateau is the highest plateau in the world and is known as Earth's third pole''. Because of its unique natural geographical and climatic characteristics, it directly affects China's climate, as well as the world's climate, through its thermal and dynamic roles. In this study, the BCCCSM1.1 model for the simulation results of CMIP5 is used to analyze the variation of the land surface processes of the Tibetan Plateau and the possible linkages with temperature change. The analysis showed that, from 1850 to 2005, as temperature increases, the model shows surface downward short-wave radiation, upward short-wave radiation, and net radiation to decrease, and long-wave radiation to increase. Meanwhile, latent heat flux increases, whereas sensible heat flux decreases. Except for sensible heat flux, the correlation coefficients of land surface fluxes with surface air temperature are all significant at the 99 % significance level. The model results indicate rising temperature to cause the ablation of ice (or snow) cover and increasing leaf area index, with reduced snowfall, together with a series of other changes, resulting in increasing upward and downward long-wave radiation and changes in soil moisture, evaporation, latent heat flux, and water vapor in the air. However, rising temperature also reduces the difference between the surface and air temperature and the surface albedo, which lead to further reductions of downward and upward short-wave radiation. The surface air temperature in winter increases by 0.93 degrees C/100 years, whereas the change is at a minimum (0.66 degrees C/100 years) during the summer. Downward short-wave and net radiation demonstrate the largest decline in the summer, whereas upward short-wave radiation demonstrates its largest decline during the spring. Downward short-wave radiation is predominantly affected by air humidity, followed by the impact of total cloud fraction. The average downward short-wave and net radiation attain their maxima in May, whereas for upward short-wave radiation the maximum is in March. The model predicts surface temperature to increase under all the different representative concentration pathway (RCP) scenarios, with the rise under RCP8.5 reaching 5.1 degrees C/100 years. Long-wave radiation increases under the different emission scenarios, while downward short-wave radiation increases under the low-and medium-emission concentration pathways, but decreases under RCP8.5. Upward short-wave radiation reduces under the various emission scenarios, and the marginal growth decreases as the emission concentration increases.

期刊论文 2014-08-01 DOI: 10.1007/s12665-013-3034-3 ISSN: 1866-6280
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页