Lakes are commonly accepted as a sensitive indicator of regional climate change, including the Tibetan Plateau (TP). This study took the Ranwu Lake, located in the southeastern TP, as the research object to investigate the relationship between the lake and regional hydroclimatological regimes. The well-known Budyko framework was utilized to explore the relationship and its causes. The results showed air temperature, evapotranspiration and potential evapotranspiration in the Ranwu Lake Basin generally increased, while precipitation, soil moisture, and glacier area decreased. The Budyko space indicated that the basin experienced an obviously drying phase first, and then a slightly wetting phase. An overall increase in lake area appears inconsistent with the drying phase of the basin climate. The inconsistency is attributable to the significant expansion of proglacial lakes due to glacial melting, possibly driven by the Atlantic Multidecadal Oscillation. Our findings should be helpful for understanding the complicated relationships between lakes and climate, and beneficial to water resources management under changing climates, especially in glacier basins.
2025-05-01 Web of ScienceLakes are known as sentinels of climate change, but their responses may differ from one to another leading to different strategies in lake protection. It is particularly the case in the Tibetan Plateau (TP) of multiple hydrological processes. We employed the Budyko framework to study Tibetan lakes from two lake-basins of contrasting climates for the period between 1980 and 2022: Taro Co Basin (TCB) in a sub-arid climate, and Ranwu Lake Basin (RLB) in a sub-humid climate. Our results showed that total lake area, surface air temperature, evapotranspiration, and potential evapotranspiration increased in both lake-basins, while precipitation and soil moisture increased in the TCB but decreased in the RLB. In the Budyko space, two basins had contrast hydroclimatic trajectories in terms of aridity and evaporative index. The TCB shifted from wetting to drying trend, while the RLB from drying to wetting in early 2000s. Notably, lake change was generally consistent with the drying/wetting phases in the TCB, but in contrast with that in the RLB, which can be attributed to warming- induced glacier melting. Despite of significant correlation with the large-scale atmospheric oscillations, it turned to be more plausible if lake area changes were substituted with basin's hydroclimatic trajectories. Among the large-scale oscillations, El Nino-Southern o-Southern Oscillation (ENSO) is the most dominant control of lake trends and their drying/wetting shifts. Our findings offer a valuable insight into lake responses to climate change in the TP and other regions.
2024-11-15 Web of ScienceAccording to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an angstrom ngstrom exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to -0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.
2023-12-01 Web of ScienceDue to polar amplification of climate change, high latitudes are warming up twice as fast as the rest of the world. This warming leads to permafrost thawing, which increases the thickness of the overlying active layer and modifies the subsurface hydrologic regime of the draining watershed, therefore affecting baseflow to surface water and modifying recession characteristics. The active layer thickening and the subsurface flow modification are assumed to be linearly correlated. The objective of this study is to test this assumption by quantifying the correlation between the temporal evolution of hydrologic parameters (recession slope and initial recession outflow) and 11 controlling factors (all linked to surface, subsurface and climatic conditions) for 336 Arctic catchments from 1970 to 2000. Contrary to previous studies, we demonstrate a clear decrease in recession slope and initial recession outflow over 1970-2000 for a majority of catchments at any significance level. We explain this result by identifying high topography and low permafrost extent as controlling factors that complexify the relationship between trends in recession parameters and active layer thickness evolution. The study goes further by identifying the mechanisms behind the complexification of the relationship: permafrost-extent loss, hydrologic-connectivity increase, flow-path-diversity increase, contributing drainage area multiplication. The novel aspect of the study lay behind the large number of studied catchments and the large range of controlling factors tested.
2021-10-01 Web of ScienceAccurately quantifying large-scale terrestrial evapotranspiration (ET) remains hampered by poor parameterization of the physical processes that relate to ET. Previous studies suggested that the calibration-free complementary relationship (CR) method that requires only routine meteorological data performed better than main-stream atmospheric reanalyses, land surface or remote sensing models in estimating large-scale ET. Here we simultaneously evaluate the latest machine learning-based upscaling of eddy-covariance measurements (FLUXCOM) and the CR estimates against the water-balance derived ET rates of 18 large Hydrologic Unit Code-2 (HUC2) and 327 medium HUC6 basins across the conterminous United States. Overall, CR and FLUXCOM perform comparably in representing the multiyear mean and temporal variations in annual ET at both, HUC2 and HUC6, scales for the 1979-2013 period. Such equally good skills also hold true for the 2003-2015 period, during which FLUXCOM was driven solely by remote sensing data. However, the CR generally captures the longterm linear tendencies in annual ET rates somewhat better than FLUXCOM. Because of its minimal data requirement, the calibration-free version of the CR may continue to serve as a benchmarking tool for large-scale ET simulations.
2021-05The large uncertainty in estimating the global aerosol radiative forcing (ARF) is one of the major challenges the climate community faces for climate projection. While the global-mean ARF may affect global quantities such as surface temperature, its spatial distribution may result in local thermodynamical and, thus, dynamical changes. Future changes in aerosol emissions distribution could further modulate the atmospheric circulation. Here, the effects of the spatial distribution of the direct anthropogenic ARF are studied using an idealized global circulation model, forced by a range of estimated-ARF amplitudes, based on the Copernicus Atmosphere Monitoring Service data. The spatial distribution of the estimated-ARF is globally decomposed, and the effects of the different modes on the circulation are studied. The most dominant spatial distribution feature is the cooling of the Northern Hemisphere in comparison to the Southern Hemisphere. This induces a negative meridional temperature gradient around the equator, which modulates the mean fields in the tropics. The ITCZ weakens and shifts southward, and the Northern (Southern) Hemisphere Hadley cell strengthens (weakens). The localization of the ARF in the Northern Hemisphere midlatitudes shifts the subtropical jet poleward and strengthens both the eddy-driven jet and Ferrel cell, because of the weakening of high-latitude eddy fluxes. Finally, the larger aerosol concentration in Asia compared to North America results in an equatorial superrotating jet. Understanding the effects of the different modes on the general circulation may help elucidate the circulation's future response to the projected changes in ARF distribution.
2018-09-01 Web of ScienceWetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. Changes in land-use, water-use and climate can all impact wetland functions and services. These changes occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, engineering and management decisions usually focus on individual wetland projects and local site conditions. Here, we systematically investigate if and to what extent research has addressed the large-scale dynamics of landscape systems with multiple wetlands, hereafter referred to as wetlandscapes, which are likely to be relevant for understanding impacts of regional to global change. Although knowledge in many cases is still limited, evidence suggests that the aggregated effects of multiple wetlands in the landscape can differ considerably from the functions observed at individual wetland scales. This applies to provisioning of ecosystem services such as coastal protection, biodiversity support, groundwater level and soil moisture regulation, flood regulation and contaminant retention. We show that parallel and circular flow-paths, through which wetlands are interconnected in the landscape, may largely control such scale-function differences. We suggest ways forward for addressing the mismatch between the scales at which changes take place and the scale at which observations and implementation are currently made. These suggestions can help bridge gaps between researchers and engineers, which is critical for improving wetland function-effect predictability and management. (C) 2017 The Author(s). Published by Elsevier B.V.
2017-11-01 Web of Science