Since China implemented the Air Pollution Prevention and Control Action Plan in 2013, the aerosol emis-sions in East Asia have been greatly reduced, while emissions in South Asia have continued to increase. This has led to a dipole pattern of aerosol emissions between South Asia and East Asia. Here, the East Asian summer monsoon (EASM) responses to the dipole changes in aerosol emissions during 2013-17 are investigated using the atmosphere model of Com-munity Earth System Model version 2 (CESM2). We show that decreases in East Asian emissions alone lead to a positive aerosol effective radiative forcing (ERF) of 1.59 (+/- 0.97) W m-2 over central-eastern China (25 degrees-40 degrees N, 105 degrees-122.5 degrees E), along with a 0.09 (+/- 0.07)degrees C warming in summer during 2013-17. The warming intensified the land-sea thermal contrast and increased the rainfall by 0.32 (+/- 0.16) mm day-1. When considering both the emission reductions in East Asia and in-creases in South Asia, the ERF is increased to 3.39 (+/- 0.89) W m-2, along with an enhanced warming of 0.20 (+/- 0.08)degrees C over central-eastern China, while the rainfall insignificant decreased by 0.07 (+/- 0.16) mm day-1. It is due to the westward shift of the strengthened western Pacific subtropical high, linked to the increase in black carbon in South Asia. Based on multiple EASM indices, the reductions in aerosol emissions from East Asia alone increased the EASM strength by almost 5%. Considering the effect of the westward shift of WPSH, the dipole changes in emissions together increased the EASM by 5%-15% during 2013-17, revealing an important role of South Asian aerosols in changing the East Asian climate.
Exploring the premonsoonal land thermal predictor of the Indian summer monsoon is a hot topic under the background of global warming, and West Asia is one of the regions with the most significant warming in spring. In this study, we investigated the impact of anomalous spring land surface warming over West Asia on early summer (June) Indian monsoon precipitation as well as its possible mechanisms based on statistical analysis and numerical simulations. It has been found that spring land surface anomalous warming over West Asia corresponds to the enhancement of the leading mode of early summer precipitation in the Indian subcontinent, especially in its northern part. Further analysis indicates that an anomalously warm land surface over West Asia can advance the transition of atmospheric conditions toward the warm season by heating the atmosphere above. The increased land-sea meridional thermal contrast favors the intensification of the low-level jet and monsoon trough, further inducing anomalous moisture convergence and ascending motion over northern India. Additionally, the heat-driven anomalous upper-tropospheric anticyclone over West Asia favors the intensification of the tropical easterly jet and the northwestward development of the South Asian high (SAH). The enhanced SAH dynamically couples with the lower- to middle-level cyclonic circulation over northern India, resulting in a stronger monsoon and increased precipitation. These findings are helpful for better understanding and prediction of Indian early summer monsoon. Significance StatementThe land surface thermal condition is critical to the monsoon activity and exploring the premonsoonal land thermal predictor of Indian summer monsoon remains a hot topic. The purpose of this study is to explore how spring land surface thermal anomalies over West Asia impact Indian monsoon activity in early summer (June). The anomalous land surface warming over West Asia can lead to a stronger Indian monsoon in early summer by heating and driving the atmosphere, which benefits the precipitation increase over northern India. Our results provide a further scientific basis for the prediction of early summer Indian precipitation.
Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20 degrees and 40 degrees N and weakens the EASM north of 20 degrees N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north-south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean-atmosphere coupling.
Previous studies on the response of the South Asian summer monsoon to the direct radiative forcing caused by anthropogenic absorbing aerosols have emphasized the role of premonsoonal aerosol forcing. This study examines the roles of aerosol forcing in both pre- and postonset periods using the Community Earth System Model, version 1.0.4, with the Community Atmosphere Model, version 4. Simulations were perturbed by model-derived radiative forcing applied (i) only during the premonsoonal period (May-June), (ii) only during the monsoonal period (July-August), and (iii) throughout both periods. Soil water storage is found to retain the effects of premonsoonal forcing into succeeding months, resulting in monsoonal central India drying. Monsoonal forcing is found to dry all of India through local responses. Large-scale responses, such as the meridional rotation of monsoon jet during June and its weakening during July-August, are significant only when aerosol forcing is present throughout both premonsoonal and monsoonal periods. Monsoon responses to premonsoonal forcing by the model-derived realistic distribution versus a uniform wide-area distribution were compared. Both simulations exhibit central India drying in June. June precipitation over northwestern India (increase) and southwestern India (decrease) is significantly changed under realistic but not under wide-area forcing. Finally, the same aerosol forcing is found to dry or moisten the July-August period following the warm or cool phase of the simulations' ENSO-like internal variability. The selection of years used for analysis may affect the precipitation response obtained, but the overall effect seems to be an increase in rainfall variance over northwest and southwest India.
The direct radiative effect of absorbing aerosols consists of absorption-induced atmospheric heating together with scattering- and absorption-induced surface cooling. It is thus important to understand whether some of the reported climate impacts of anthropogenic absorbing aerosols are mainly due to the coexistence of these two opposite effects and to what extent the nonlinearity raised from such coexistence would become a critical factor. To answer these questions specifically regarding the South Asia summer monsoon with focus on aerosol-induced changes in monsoon onset, a set of century-long simulations using the Community Earth System Model, version 1.0.3 (CESM 1.0.3), of NCAR with fully coupled atmosphere and ocean components was conducted. Prescribed direct heating to the atmosphere and cooling to the surface were applied in the simulations over the Indian subcontinent, either alone or combined, during the aerosol-laden months of May and June. Over many places in the Indian subcontinent, the nonlinear effect dominates in the changes of subcloud layer moist static energy, precipitation, and monsoon onset. The surface cooling effect of aerosols appears to shift anomalous precipitative cooling away from the aerosol-forcing region and hence turn the negative feedback to aerosol-induced atmospheric heating into a positive feedback on the monsoon circulation through latent heat release over the Himalayan foothills. Moisture processes form the critical chain mediating local aerosol direct effects and onset changes in the monsoon system.