Surface freezing and thawing processes pose significant influences on surface water and energy balances, which, in turn, affect vegetation growth, soil moisture, carbon cycling, and terrestrial ecosystems. At present, the changes in surface freezing and thawing states are hotspots of ecological research, but the variations of surface frozen days (SFDs) are less studied, especially in the permafrost areas covered with boreal forest, and the influence of the environmental factors on the SFDs is not clear. Utilizing the Advanced Microwave Scanning Radiometer for EOS (AMSRE) and Microwave Scanning Radiometer 2 (AMSR2) brightness temperature data, this study applies the Freeze-Thaw Discriminant Function Algorithm (DFA) to explore the spatiotemporal variability features of SFDs in the Northeast China Permafrost Zone (NCPZ) and the relationship between the permafrost distribution and the spatial variability characteristics of SFDs; additionally, the Optimal Parameters-based Geographical Detector is employed to determine the factors that affect SFDs. The results showed that the SFDs in the NCPZ decreased with a rate of -0.43 d/a from 2002 to 2021 and significantly decreased on the eastern and western slopes of the Greater Khingan Mountains. Meanwhile, the degree of spatial fluctuation of SFDs increased gradually with a decreasing continuity of permafrost. Snow cover and air temperature were the two most important factors influencing SFD variability in the NCPZ, accounting for 83.9% and 74.8% of the spatial variation, respectively, and SFDs increased gradually with increasing snow cover and decreasing air temperature. The strongest explanatory power of SFD spatial variability was found to be the combination of air temperature and precipitation, which had a coefficient of 94.2%. Moreover, the combination of any two environmental factors increased this power. The findings of this study can be used to design ecological environmental conservation and engineer construction policies in high-latitude permafrost zones with forest cover.
Accurate delineation of spatiotemporal variations in ground surface soil freeze and thaw (F/T) states is essential to appraise many geoscience issues, such as the hydrological circulation and land surface-atmosphere feedbacks. Recently, an Improved Dual-index algorithm (DIA) method was proposed by accounting for the influence of soil moisture variations on the discrimination accuracy with passive microwave remote sensing (RS) data products. Compared with the original DIA, the Improved DIA method has proven to be a more practical approach on surface soil F/T states discrimination. However, the method has only been applied and verified in cold regions of high-altitude (e.g., Tibetan Plateau), it's applicability and effectiveness in the cold areas in mid-high latitudes, where the geographic and climatic conditions are quite different, yet remained to be further explored. The present study investigated the feasibility of using AMSR-E (the Advanced Microwave Scanning Radiometer-EOS) and AMSR2 (the second Advance Microwave Scanning Radiometer) passive microwave RS data products to discriminate the F/T states of the ground surface for a long period from 2002 to 2019 by means of the Improved DIA method over a typical mid-high latitude cold region of Northeastern China. Seasonal variation characteristics of soil moisture in mid-high latitude areas were similar with those in high-altitude areas, even though the spatial heterogeneity of soil water content was significant in different regions. Discriminating surface soil F/T states with the Improved DIA method derived overall discriminating accuracy of about 91.6% in the study area, which demonstrated excellent feasibility of the Improved DIA method in mid-high latitude cold regions. The mapping results shown surface soil F/T cycle in Northeastern China responding to climate change was examined from the perspective of regional average, both the proportion of frozen soil area and frozen days showed significant decreasing trends continuously with differed quite spatially. The discriminating accuracy of the Improved DIA method was found to be lower in plain areas with dense populations and large farmland areas compared to mountainous areas when human activities were not taken into consideration, as quantifying human activities can be challenging. The Improved DIA method has been well verified in both high-altitude and high-latitude regions; it has great potential in global scale research.
Permafrost monitoring using remote sensing techniques is an effective approach at present. Permafrost mostly occurs below the land surface, which limits permafrost monitoring by optical remote sensing. Considering the specific hydrothermal relations between permafrost and its active layer, we developed a permafrost monitoring and classification method that integrated the ground surface soil freeze/thaw states determined by the dual-index algorithm (DIA) and the permafrost classification method based on thermal stability. The modified frost index was introduced into the method as a link between the DIA and the permafrost classification method. Northeastern China was selected to establish and verify the proposed method and to examine the changes in regional permafrost against the background of global warming from 2002 to 2017. The results showed that the ground surface soil freeze/thaw states were significantly correlated with the permafrost distribution. The spatial continuity of permafrost and its sensitivity to climate change could be effectively reflected by the modified frost index. The proposed method had a high accuracy with a classification error smaller than 3%, compared with static permafrost maps. Moreover, the proportion of permafrost decreased from 29% at the beginning of the 21st century to 22.5% at present in northeastern China over the study period. The southern permafrost boundary in the study area generally moved northward approximately 25-75 km. Additionally, the method was applied to the Northern Hemisphere (30 degrees N - 90 degrees N), which demonstrated its effectiveness and extended applicability.