Tree-ring intra-annual stable isotopes (delta C-13 and delta O-18) are powerful tools for revealing plant ecophysiological responses to climatic extremes. We analyzed interannual and fine-scale intra-annual variability of tree-ring delta C-13 and delta O-18 in Chinese red pine (Pinus massoniana) from southeastern China to explore environmental drivers and potential trade-offs between the main physiological controls. We show that wet season relative humidity (May-October RH) drove interannual variability of delta O-18 and intra-annual variability of tree-ring delta O-18. It also drove intra-annual variability of tree-ring delta C-13, whereas interannual variability was mainly controlled by February-May temperature and September-October RH. Furthermore, intra-annual tree-ring delta O-18 variability was larger during wet years compared with dry years, whereas delta C-13 variability was lower during wet years compared with dry years. As a result of these differences in intra-annual variability amplitude, process-based models (we used the Roden model for delta O-18 and the Farquhar model for delta C-13) captured the intra-annual delta O-18 pattern better in wet years compared with dry years, whereas intra-annual delta C-13 pattern was better simulated in dry years compared with wet years. This result suggests a potential asymmetric bias in process-based models in capturing the interplay of the different mechanistic processes (i.e., isotopic source and leaf-level enrichment) operating in dry versus wet years. We therefore propose an intra-annual conceptual model considering a dynamic trade-off between the isotopic source and leaf-level enrichment in different tree-ring parts to understand how climate and ecophysiological processes drive intra-annual tree-ring stable isotopic variability under humid climate conditions.
Understanding varying climate responses in tree-ring data across tree ages is important, but little is known about tree-age effects on climate responses in tree-ring stable isotopes. To detect whether age differences in tree-ring delta C-13 and delta O-18 could lead to differing climate responses, we measured tree-ring cellulose delta C-13 and delta O-18 (1901-2010) from Schrenk spruce (Picea schrenkiana) trees in northwestern China with ages ranging from 110 to 470 years, which we binned into three age groups. Tree-ring delta C-13 (pin-corrected) and delta O-18 exhibited similar year-to-year variability between age groups and did not feature age-related trends. delta C-13 series from old trees (270-470 years) showed stronger legacy effects, reflecting influences from the antecedent period (due to carbohydrate reserves and climate), compared to young trees (110-125 years). Both tree-ring delta C-13 and delta O-18 values decreased with increasing relative humidity (RH) and precipitation and with decreasing mean and maximum temperatures during the main growing season (May-August). delta C-13 and delta O-18 exhibited age-dependent climate responses: Young trees had a stronger climate response in delta C-13 but a weaker or similar climate response in delta O-18 compared to old trees. We developed multiple growing-season RH reconstructions based on composite chronologies using delta C-13 and delta O-18 series from different age groups. In particular, we found that including delta C-13 from young trees improved the skill of RH reconstructions because of the age-specific mechanisms driving the delta C-13-climate relationship, but that caution is warranted with regard to extreme values. We therefore suggest that young trees should be considered when using stable isotopes, particularly in delta C-13, for climate reconstruction.
Recycled moisture, mainly originated from evapotranspiration (surface evaporation and transpiration), is the main sources of precipitation. Influenced on the different regional/local environments, the contributions of recycled moisture to precipitation present as different proportions. Recycled moisture has an important impact on the hydrological cycle, further occurred a series of environmental effect for regional/local. Aimed to estimate the contribution of recycled moisture to precipitation in an enclosed basin, Guanzhong Basin of northern China, precipitation and lake/reservoir samples were collected. The isotope ratio analysis was done for the summer season, and a three-component mixing model based on the stable hydrogen and oxygen isotopes was applied. The results indicated that the averaged contribution of recycled moisture to precipitation was 17.44% in Guanzhong Basin of northern China, while the mean proportions of surface evaporation moisture and transpiration moisture were found to be 0.38% and 16.97%, respectively. Comparatively, most of the recycled moisture mainly comes from transpiration moisture rather than evaporation moisture, suggesting that transpiration moisture from cropland, vegetation, and plants instead of evaporation is dominant in moisture recycling of the Guanzhong Basin.
The clumped and stable isotope (Delta(47), delta O-18, and delta C-13) composition of pedogenic (soil) carbonates from cold, arid environments may be a valuable paleoclimate archive for climate change-sensitive areas at high latitudes or elevations. However, previous work suggests that the isotopic composition of cold-climate soil carbonates is susceptible to kinetic isotope effects (KIE). To evaluate the conditions under which KIE occur in cold-climate soil carbonates, we examine the Delta(47), delta O-18, and delta C-13 composition of soil carbonate pendants from Antarctica (Dry Valleys, 77 degrees S), the High Arctic (Svalbard 79 degrees N), the Chilean and Argentinian Andes, and the Tibetan plateau (3800-4800 m), and compare the results to local climate and water delta O-18 records. At each site we calculate the expected equilibrium soil carbonate Delta(47) and delta O-18 values and estimate carbonate Delta(47) and delta O-18 anomalies (observed Delta(47) or delta O-18 minus the expected equilibrium Delta(47) or delta O-18). Additionally, we compare the measured carbonate delta C-13 to the expected range of equilibrium soil carbonate delta C-13 values. To provide context for interpreting the Delta(47) and delta O-18 anomalies, the soil carbonate results are compared to results for sub-glacial carbonates from two different sites, which exhibit large Delta(47) anomalies (up to -0.29 parts per thousand). The Antarctic and 4700 masl Chilean Andes samples have negative Delta(47) anomalies and positive delta O-18 anomalies consistent with KIE due to rapid bicarbonate dehydration during cryogenic carbonate formation. In contrast, the lower elevation Chilean Andes, Argentinian Andes, Tibetan Plateau and High Arctic results are consistent with equilibrium, summer carbonate formation. We attribute the differences in Delta(47) and delta O-18 anomalies to variations in inter-cobble matrix grain size and its effects on the effective soil pore space, permeability (hydraulic conductivity), moisture, and bicarbonate dehydration rate. The Antarctic and 4700 masl Chilean Andean soils have coarse-grained matrices that facilitate rapid bicarbonate dehydration. In contrast, the lower elevation Chilean Andes, Argentinian Andes, High Arctic and Tibetan Plateau soils have finer-grained matrices that decrease the soil pore space, soil permeability and CO2 gas flux, promoting equilibrium carbonate formation. The sub-glacial carbonate samples yield highly variable Delta(47) and delta O-18 anomalies, and we propose that the differences between the two glacier sites may be due to variations in local sub-glacial drainage conditions, pCO(2), and pH. Our findings suggest that carbonates from soils with coarse-grained matrices may exhibit KIE in cold climates, making them poor paleoclimate proxies. Soils with fine-grained matrices are more likely to yield equilibrium carbonates suitable for paleoclimate reconstructions regardless of climate. Paleosol matrix grain size should therefore be taken into account in the evaluation of carbonate stable and clumped isotope values in paleoclimate studies. (C) 2018 Elsevier Ltd. All rights reserved.
Declining sea-ice extent is currently amplifying climate warming in the Arctic. Instrumental records at high latitudes are too short-term to provide sufficient historical context for these trends, so paleoclimate archives are needed to better understand the functioning of the sea ice-albedo feedback. Here we use the oxygen isotope values of wood cellulose in living and sub-fossil willow shrubs (delta O-18(wc)) (Salix spp.) that have been radiocarbon-dated (C-14) to produce a multi-millennial record of climatic change on Alaska's North Slope during the Pleistocene-Holocene transition (13,500-7500 calibrated 14C years before present; 13.5-7.5 ka). We first analyzed the spatial and temporal patterns of delta O-18(wc) in living willows growing at upland sites and found that over the last 30 years delta O-18(wc) values in individual growth rings correlate with local summer temperature and inter-annual variations in summer sea-ice extent. Deglacial delta O-18(wc) values from 145 samples of subfossil willows clearly record the Allerod warm period (similar to 13.2 ka), the Younger Dryas cold period (12.9-11.7 ka), and the Holocene Thermal Maximum (11.7-9.0 ka). The magnitudes of isotopic changes over these rapid climate oscillations were similar to 4.5 parts per thousand, which is about 60% of the differences in delta O-18(wc) between those willows growing during the last glacial period and today. Modeling of isotope-precipitation relationships based on Rayleigh distillation processes suggests that during the Younger Dryas these large shifts in 6180,c values were caused by interactions between local temperature and changes in evaporative moisture sources, the latter controlled by sea ice extent in the Arctic Ocean and Bering Sea. Based on these results and on the effects that sea-ice have on climate today, we infer that ocean-derived feedbacks amplified temperature changes and enhanced precipitation in coastal regions of Arctic Alaska during warm times in the past. Today, isotope values in willows on the North Slope of Alaska are similar to those growing during the warmest times of the Pleistocene-Holocene transition, which were times of widespread permafrost thaw and striking ecological changes. (C) 2017 Elsevier Ltd. All rights reserved.