在列表中检索

共检索到 2

Study region: The Qinghai Lake basin, including China's largest saltwater lake, is located on the Qinghai-Tibetan Plateau (QTP). Study focus: This study focuses on the hydrological changes between the past (1971-2010) and future period (2021-2060) employing the distributed hydrological model in the Qinghai Lake basin. Lake evaporation, lake precipitation, and water level changes were estimated using the simulations driven by corrected GCM data. The impacts of various factors on the lake water levels were meticulously quantified. New hydrological insights: Relative to the historical period, air temperatures are projected to rise by 1.72 degrees C under SSP2-4.5 and by 2.21 degrees C under SSP5-8.5 scenarios, and the future annual precipitation will rise by 34.7 mm in SSP2-4.5 and 44.1 mm in SSP5-8.5 in the next four decades. The ground temperature is projected to show an evident rise in the future period, which thickens the active layer and reduces the frozen depth. The runoff into the lake is a pivotal determinant of future water level changes, especially the runoff from the permafrost degradation region and permafrost region dominates the future water level changes. There will be a continuous rapid increase of water level under SSP5-8.5, while the water level rising will slow down after 2045 in the SSP2-4.5 scenario. This study provides an enhanced comprehension of the climate change impact on QTP lakes.

期刊论文 2025-06-01 DOI: 10.1016/j.ejrh.2025.102425

Study region: The Qinghai Lake Basin, Qinghai-Tibetan Plateau. The Qinghai Lake is the largest inland saltwater lake in China. Study focus: Significant increase in runoff into the Qinghai Lake has been reported; however, the relationship between frozen soil changes and runoff remains poorly understood. This study investigated the temporal and spatial variations in frozen soil and associate effects on streamflow and soil moisture in the study region by a distributed eco-hydrological model. New hydrological insights: The results illustrate that the coverage of permafrost decreased by about 13% from 1971 to 2015, and permafrost degradation mainly occurred in the elevation interval of 3600-4200 m. The maximum frozen depth averaged in the seasonally frozen ground significantly decreased by 0.06 m/10a, while the active layer thickness averaged in the permafrost enhanced by 0.02 m/10a. Permafrost degradation caused enhanced soil liquid water storage and an increase in freezing season runoff. The increase in runoff in the thawing season was dominated by changes in precipitation. The results suggest that frozen soil degradation altered the seasonal flow regime, leading to lags in the monthly runoff peak, and it increased the base flow and reduced the thawing season runoff. This offset of the competing impacts of frozen soil changes in different seasons led to a negative effect on annual runoff. This study provides new understandings of cryospheric hydrological responses to climate change.

期刊论文 2022-02-01 DOI: 10.1016/j.ejrh.2022.100993
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页