With global warming and its amplified effect on the Tibetan Plateau, the permafrost on the Tibetan Plateau has been significantly degraded, manifested by decreased permafrost thickness, increased active layer thickness, thermokarst, and surface subsidence, causing severe damage to infrastructure. To better understand and assess the future stability of the Qinghai-Tibet Railway, we used a laterally coupled version of the one-dimensional CryoGrid3 land surface model to simulate the thermal regimes of the railway subgrade under current climate conditions. By modeling ground subsidence (i.e., by simulating the melting of excess ice) we provide estimates of future subgrade stability under low (Representative Concentration Pathway 2.6 [RCP2.6]) and high (RCP8.5) climate warming scenarios. Our modeled results reveal satisfactory performance with respect to the comparison of measured and modeled ground thermal regimes. Under current climate conditions, we infer that mostly thaw-stable conditions as maximum thaw depths do not reach the embankment base. The sunny side of the embankment (southeast-facing) reveals being more vulnerable to suffering from thaw settlement or thermal erosion than the shady side (northwest-facing). The extent of future railway failure due to thawing permafrost will depend on the magnitude of the warming. For conditions typical of Beiluhe (situated on continuous permafrost in the central Tibetan Plateau), the railway embankment might largely maintain safe operation until the end of the century under a scenario of climate stabilization. In contrast, under strong warming the railway subgrade is likely to destabilize from the 2030s onwards and embankment subsidence is initiated at mid-century through the melting of excess ice.
2023-08-01 Web of ScienceThird Pole natural cascade alpine lakes (NCALs) are exceptionally sensitive to climate change, yet the underlying cryosphere-hydrological processes and associated societal impacts are largely unknown. Here, with a state-of-the-art cryosphere-hydrology-lake-dam model, we quantified the notable high-mountain Hoh-Xil NCALs basin (including Lakes Zonag, Kusai, Hedin Noel, and Yanhu, from upstream to downstream) formed by the Lake Zonag outburst in September 2011. We demonstrate that long-term increased precipitation and accelerated ice and snow melting as well as short-term heavy precipitation and earthquake events were responsible for the Lake Zonag outburst; while the permafrost degradation only had a marginal impact on the lake inflows but was crucial to lakeshore stability. The quadrupling of the Lake Yanhu area since 2012 was due to the tripling of inflows (from 0.25 to 0.76 km(3)/year for 1999 to 2010 and 2012 to 2018, respectively). Prediction of the NCALs changes suggests a high risk of the downstream Qinghai-Tibet Railway, necessitating timely adaptions/mitigations.
2023-06-07An active layer detachment slide (ALDS) in the interior portion of the Qinghai-Tibet Plateau (QTP) was investigated within 2 days of its formation on September 21, 2018. The ALDS developed on a relatively gentle slope (4.8 degrees to 9 degrees) at an elevation of 4,850 m above sea level (asl) and was about 145 m long and 45 m wide, with a headscarp 2.2-2.5 m high. Analyses of meteorological data and soil temperatures indicated that it was probably triggered by a record thaw depth which intersected a layer with high ice content at the base of the active layer and in the top of the permafrost. Based on the time window, the minimum downslope velocity of the main slide mass was about 20 m/h which is higher than previously reported values. The ALDS ran into the embankment of the Qinghai-Tibet Railway (QTR) but did not damage the railbed. However, extensive rehabilitation of the slope was needed subsequent to the failure to clear the slide mass and as minor headscarp recession and thaw settlement continued on the slope. In this work, we describe this feature and the most likely mechanisms of development.
2022-07-01 Web of ScienceThe Qinghai-Tibet Railway (QTR) is the railway with the highest elevation and longest distance in the world, spanning more than 1142 km from Golmud to Lhasa across the continuous permafrost region. Due to climate change and anthropogenic activities, geological disasters such as subsidence and thermal melt collapse have occurred in the QTR embankment. To conduct the large-scale permafrost monitoring and geohazard investigation along the QTR, we collected 585 Sentinel-1A images based on the composite index model using the multitrack time-series interferometry synthetic aperture radar (MTS-InSAR) method to retrieve the surface deformation over a 3.15 x 10(5) km(2) area along the QTR. Meanwhile, a new method for permafrost distribution mapping based on InSAR time series deformation was proposed. Finally, the seasonal deformation map and a new map of permafrost distribution along the QTR from Golmud to Lhasa were obtained. The results showed that the estimated seasonal deformation range of the 10 km buffer zone along the QTR was -50-10 mm, and the LOS deformation rate ranged from -30 to 15 mm/yr. In addition, the deformation results were validated by leveling measurements, and the range of absolute error was between 0.1 and 4.62 mm. Most of the QTR was relatively stable. Some geohazard-prone sections were detected and analyzed along the QTR. The permafrost distribution results were mostly consistent with the simulated results of Zou's method, based on the temperature at the top of permafrost (TTOP) model. This study reveals recent deformation characteristics of the QTR, and has significant scientific implications and applicational value for ensuring the safe operation of the QTR. Moreover, our method, based on InSAR results, provides new insights for permafrost classification on the Qinghai-Tibet Plateau (QTP).
2021-12-01 Web of ScienceThe Qinghai-Tibet Railway (QTR) is the highest plateau artificial facility, connecting Lhasa and Golmud over Qinghai-Tibet Plateau. Climate change and anthropogenic activities are changing the condition of plateau, with potential influences on the stabilities of QTR. Synthetic aperture radar interferometry (InSAR) technique could retrieve ground millimeter scale deformation utilizing phase information from SAR images. In this study, the structure and deformation features of QTR are retrieved and analyzed using time-series interferometry with Sentinel-1A and TerraSAR-X images. The backscattering and coherence features of QTR are analyzed in medium and very high-resolution SAR images. Then, the deformation results from different SAR datasets are estimated and analyzed. Experimental results show that some of the QTR sections undergo serious deformation, with the maximum deformation rate of -20 mm/year. Moreover, the detailed deformation feature in the Beiluhe has been analyzed as well as the effects of different cooling measurements underline QTR embankment. It is also found that embankment-bridge transition along QTR is prone to undergo deformation. Our study demonstrates the application potential of high-resolution InSAR in deformation monitoring of QTR.
2019-12-01 Web of ScienceLong-term thermal effects of air convection embankments (ACEs) over 550-km-long permafrost zones along the Qinghai-Tibet railway were analyzed on the basis of 14-year records (2002-2016) of ground temperature. The results showed that, after embankment construction, permafrost tables beneath the ACEs moved upward quickly in the first 3years and then remained stable over the next 10years. The magnitude of this upward movement showed a positive correlation with embankment thickness. Shallow permafrost temperature beneath the ACEs decreased over a 5-year period after embankment construction in cold permafrost zones, but increased sharply concurrent with permafrost table upward movement in warm permafrost zones. Deep permafrost beneath all the ACEs showed a slow warming trend due to climate warming. Overall, the thermal effects of ACEs significantly uplifted underlying permafrost tables after embankment construction and then maintained them well in a warming climate. The different thermal effects of ACEs in cold and warm permafrost zones related to the working principle of the ACEs and natural ground thermal regime in the two zones. (c) 2018 American Society of Civil Engineers.
2018-12-01 Web of ScienceWind erosion along the Qinghai-Tibet Railway causes sand hazard and poses threats to the safety of trains and passengers. A coupled land-surface erosion model (Noah-MPWE) was developed to simulate the wind erosion along the railway. Comparison with the data from the Cs-137 isotope analysis shows that this coupled model could simulate the mean erosion amount reasonably. The coupled model was then applied to eight sites along the railway to investigate the wind-erosion distribution and variations from 1979 to 2012. Factors affecting wind erosion spatially and temporally were assessed as well. Majority wind erosion occurs in the non-monsoon season from December to April of the next year except for the site located in desert. The region between Wudaoliang and Tanggula has higher wind erosion occurrences and soil lose amount because of higher frequency of strong wind and relatively lower soil moisture than other sites. Inter-annually, all sites present a significant decreasing trend of annual soil loss with an average rate of - 0.18 kg m(-2) a(-1) in 1979-2012. Decreased frequency of strong wind, increased precipitation and soil moisture contribute to the reduction of wind erosion in 1979-2012. Snow cover duration and vegetation coverage also have great impact on the occurrence of wind erosion.
2018-06-01 Web of ScienceIn permafrost areas, the timing of thermal surface settlement hazard onset is of great importance for the construction and maintenance of engineering facilities. Future permafrost thaw and the associated thermal settlement hazard onset timing in the Qinghai-Tibet engineering corridor (QTEC) were analyzed using high-resolution soil temperature data from the Community Land Model version 4 in combination with multiple model and scenario soil temperature data from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Compared to the standard frozen ground map for the Tibetan Plateau and ERA-Interim data, a multimodel ensemble reproduces the extent of permafrost and soil temperature change in the QTEC at a 1 m depth from 1986-2005. Soil temperature and active layer thickness increase markedly during 2006-2099 using CMIP5 scenarios. By 2099, the ensemble mean soil temperature at 15 m depth will increase between 1.0 and 3.6 A degrees C in the QTEC. Using crushed-rock revetments can delay the onset of thermal settlement hazard for colder permafrost areas by approximately 17 years in the worst case scenario of RCP8.5. Nearly one-third of the area of the QTEC exhibits settlement hazard as early as 2050, and half of this one-third of the area is traversed by the Qinghai-Tibet highway/railway, a situation that requires more planning and remedial attention. Simulated onsets of thermal settlement hazard correspond well to the observed soil temperature at 15 m depth for seven grid areas in the QETC, which to some extent indicates that these timing estimates are reasonable. This study suggests that climate model-based timing estimation of thermal settlement hazard onset is a valuable method, and that the results are worthy of consideration in engineering design and evaluation.
2015-12-01 Web of ScienceThe evolution of permafrost and the active layer is highly related to biological diversity and climate change because of its feedback effects involving water and carbon storage. In this study, we firstly examined the relationship of active layer variation, geomorphological processes and anthropogenic activities by means of small baseline synthetic aperture radar interferometry in Beiluhe, Hoh Xil natural reserve in Tibet Plateau (TP), China. 3.5-Yr observation span of L-band ALOS PALSAR data (June, 2007 to December, 2010) was used. The estimated surface displacements (primarily in the range of 20 mm yr(-1) to 20 mm yr(-1)) and time-series implied evolution of the active layer and permafrost beneath. The motion trend along slopes was complicated due to the geomorphological processes, and thus interdisciplinary interpretations were needed. Anthropogenic influences on this frail permafrost environment were significant, as evident from the remarkable surface settlement along the embankment of Qinghai-Tibet Railway. It is crucial and necessary to monitor this permafrost plateau owing to the consequences arising from a combination of factors related to climate change, geo-hazard prediction, nature conservation and regional sustainable development. (C) 2013 Elsevier Inc All rights reserved.
2013-11-01 Web of Science