Open-pit coal mining poses a severe threat to regional ecological security. Rapid and accurate monitoring of ecological quality changes is crucial for regional ecological restoration. In this study, taking the Wujiata open-pit coal mine as an example, the Red-Edge Normalized Difference Vegetation Index (RENDVI), Salinity Index (SI-T), WETness index (WET), Normalized Differential Built Soil Index (NDBSI), Land Surface Temperature (LST), and Desertification Index (DI) were used to construct the Open-pit Mine Remote Sensing Ecological Index (OM-RSEI) through Principal Component Analysis (PCA). The ecological quality and restoration conditions of typical mining areas in arid and semi-arid regions were monitored and evaluated. The results shown that: (1) The contribution rates and eigenvalues of OM-RSEI were higher than those of conventional RSEI, OM-RSEI was more applicable in open-pit mining areas. (2) From 2018 to 2023, the OM-RSEI of the Wujiata open-pit coal mine showed a 'V' shaped fluctuation that was damaged and then gradually recovered. (3) The degraded area of Wujiata open-pit coal mine and its 5 km buffer zone accounted for 78.02%, and the improved area accounted for 19.16%. (4) The average Moran's I index of OM-RSEI in the study area was 0.8189, and the high-high clustering corresponded to the 'good' and 'excellent' distributions, while the low-low clustering corresponded to the 'poor' and 'less-poor' distributions. The OM-RSEI provided a new indicator for monitoring and evaluation of ecological restoration in open-pit coal mines, which can provide theoretical support for ecological restoration in open-pit coal mining areas.
Open-pit coal mining inevitably damages the soil and vegetation in mining areas. Currently, the restoration of cold and arid open-pit mines in Xinjiang, China, is still in the initial exploratory stage, especially the changes in soil nutrients in spoil dumps over time. Dynamic remote sensing monitoring of vegetation in mining areas and their correlation are relatively rare. Using the Heishan Open Pit in Xinjiang, China, as a case, soil samples were collected during different discharge periods to analyze the changes in soil nutrients and uncover the restoration mechanisms. Based on four Landsat images from 2018 to 2023, the remote sensing ecological index (RSEI) and fractional vegetation cover (FVC) were obtained to evaluate the effect of mine restoration. Additionally, the correlation between vegetation changes and soil nutrients was analyzed. The results indicated that (i) the contents of nitrogen (N), phosphorus (P), potassium (K), and organic matter (OM) in the soil increased with the duration of the restoration period. (ii) When the restoration time of the dump exceeds 5 years, N, P, K, and OM content is higher than that of the original surface-covered vegetation area. (iii) Notably, under the same restoration aging, the soil in the artificial mine restoration demonstration base had significantly higher contents of these nutrients compared to the soil naturally restored in the dump. (iv) Over the past five years, the RSEI and FVC in the Heishan Open Pit showed an overall upward trend. The slope remediation and mine restoration project significantly increased the RSEI and FVC values in the mining area. (v) Air humidity and surface temperature were identified as key natural factors affecting the RSEI and FVC in cold and arid open pit. The correlation coefficients between soil nutrient content and vegetation coverage were higher than 0.78, indicating a close and complementary relationship between the two. The above results can clarify the time-effect relationship between natural recovery and artificial restoration of spoil dumps in cold and arid mining areas in Xinjiang, further promoting the research and practice of mine restoration technology in cold and arid open pits.
在全球变暖导致冻土退化的趋势下,对三江源不同冻土区的生态环境质量时空演变及驱动力进行研究,可为区域生态环境治理和生态文明建设提供一定理论依据.基于谷歌地球引擎(GEE)2000~2022年的MODIS数据集构建遥感生态指数(RSEI),结合变异系数、重心迁移、Theil-Sen斜率估计、Mann-Kendall检验与Hurst指数探索三江源不同冻土区生态环境质量的时空演变规律,并运用地理探测器对比分析自然和人为因子对生态环境质量空间分异的驱动力.结果表明:(1)2000~2022年,三江源生态环境质量整体处于中等水平,呈现“西北低、东南高”的空间分布格局,各冻土区RSEI均值依次为:大片-岛状多年冻土区(0.630)>山地多年冻土区(0.624)>中深季节冻土区(0.587)>大片多年冻土区(0.429).(2)23 a间,三江源生态环境质量整体变好,RSEI上升速率为0.001 5 a-1,RSEI各等级重心向大片多年冻土区内部迁移,各冻土区均有超过57.00%的面积呈改善趋势,中深季节冻土区达到73.37%.(3)未来,三江源生态环境质量总体...
在全球变暖导致冻土退化的趋势下,对三江源不同冻土区的生态环境质量时空演变及驱动力进行研究,可为区域生态环境治理和生态文明建设提供一定理论依据.基于谷歌地球引擎(GEE)2000~2022年的MODIS数据集构建遥感生态指数(RSEI),结合变异系数、重心迁移、Theil-Sen斜率估计、Mann-Kendall检验与Hurst指数探索三江源不同冻土区生态环境质量的时空演变规律,并运用地理探测器对比分析自然和人为因子对生态环境质量空间分异的驱动力.结果表明:(1)2000~2022年,三江源生态环境质量整体处于中等水平,呈现“西北低、东南高”的空间分布格局,各冻土区RSEI均值依次为:大片-岛状多年冻土区(0.630)>山地多年冻土区(0.624)>中深季节冻土区(0.587)>大片多年冻土区(0.429).(2)23 a间,三江源生态环境质量整体变好,RSEI上升速率为0.001 5 a-1,RSEI各等级重心向大片多年冻土区内部迁移,各冻土区均有超过57.00%的面积呈改善趋势,中深季节冻土区达到73.37%.(3)未来,三江源生态环境质量总体...
在全球变暖导致冻土退化的趋势下,对三江源不同冻土区的生态环境质量时空演变及驱动力进行研究,可为区域生态环境治理和生态文明建设提供一定理论依据.基于谷歌地球引擎(GEE)2000~2022年的MODIS数据集构建遥感生态指数(RSEI),结合变异系数、重心迁移、Theil-Sen斜率估计、Mann-Kendall检验与Hurst指数探索三江源不同冻土区生态环境质量的时空演变规律,并运用地理探测器对比分析自然和人为因子对生态环境质量空间分异的驱动力.结果表明:(1)2000~2022年,三江源生态环境质量整体处于中等水平,呈现“西北低、东南高”的空间分布格局,各冻土区RSEI均值依次为:大片-岛状多年冻土区(0.630)>山地多年冻土区(0.624)>中深季节冻土区(0.587)>大片多年冻土区(0.429).(2)23 a间,三江源生态环境质量整体变好,RSEI上升速率为0.001 5 a-1,RSEI各等级重心向大片多年冻土区内部迁移,各冻土区均有超过57.00%的面积呈改善趋势,中深季节冻土区达到73.37%.(3)未来,三江源生态环境质量总体...
青藏公路是我国重要的交通线,其沿线生态环境质量受到学者的广泛关注,如何全面、快速和准确地对其生态环境质量进行评估极为重要。文中以GEE(Google earth engine)平台为技术支撑,以2010年青藏公路第五次改建工程为研究切入点,选取2005-2020年那曲至安多段中轴线两侧5km提取绿度(NDVI)、热度(LST)、干度(NDSI)和湿度(WET)四个指标,利用主成分分析法(PCA)构建遥感生态指数(RSEI)模型对青藏公路沿线生态环境质量进行评估,并使用变异系数对其波动性进行分析。结果表明:1)RSEI四个分指标中,热度是影响研究区生态环境质量的主要指标。2)2005-2020年,研究区生态环境质量波动上升,总体明显改善,改善面积达1424.34km2,占比99.71%,恶化区域主要集中在北部安多段附近。3)研究区生态环境质量等级由较差为主转变为以较好为主,等级为优和较好的区域占比明显增加;中等、差和较差区域占比有所降低,其中RSEI优和良的比例由2005年的0.21%和1.25%上升至2020年9.46%和88.31%。
青藏公路是我国重要的交通线,其沿线生态环境质量受到学者的广泛关注,如何全面、快速和准确地对其生态环境质量进行评估极为重要。文中以GEE(Google earth engine)平台为技术支撑,以2010年青藏公路第五次改建工程为研究切入点,选取2005-2020年那曲至安多段中轴线两侧5km提取绿度(NDVI)、热度(LST)、干度(NDSI)和湿度(WET)四个指标,利用主成分分析法(PCA)构建遥感生态指数(RSEI)模型对青藏公路沿线生态环境质量进行评估,并使用变异系数对其波动性进行分析。结果表明:1)RSEI四个分指标中,热度是影响研究区生态环境质量的主要指标。2)2005-2020年,研究区生态环境质量波动上升,总体明显改善,改善面积达1424.34km2,占比99.71%,恶化区域主要集中在北部安多段附近。3)研究区生态环境质量等级由较差为主转变为以较好为主,等级为优和较好的区域占比明显增加;中等、差和较差区域占比有所降低,其中RSEI优和良的比例由2005年的0.21%和1.25%上升至2020年9.46%和88.31%。
青藏公路是我国重要的交通线,其沿线生态环境质量受到学者的广泛关注,如何全面、快速和准确地对其生态环境质量进行评估极为重要。文中以GEE(Google earth engine)平台为技术支撑,以2010年青藏公路第五次改建工程为研究切入点,选取2005-2020年那曲至安多段中轴线两侧5km提取绿度(NDVI)、热度(LST)、干度(NDSI)和湿度(WET)四个指标,利用主成分分析法(PCA)构建遥感生态指数(RSEI)模型对青藏公路沿线生态环境质量进行评估,并使用变异系数对其波动性进行分析。结果表明:1)RSEI四个分指标中,热度是影响研究区生态环境质量的主要指标。2)2005-2020年,研究区生态环境质量波动上升,总体明显改善,改善面积达1424.34km2,占比99.71%,恶化区域主要集中在北部安多段附近。3)研究区生态环境质量等级由较差为主转变为以较好为主,等级为优和较好的区域占比明显增加;中等、差和较差区域占比有所降低,其中RSEI优和良的比例由2005年的0.21%和1.25%上升至2020年9.46%和88.31%。
青藏公路沿线生态环境是西藏地区生态文明建设的重要组成部分,目前研究青藏高原独特的地理环境普遍存在数据获取困难、时效性过低及未考虑研究区独特的“高寒盐碱”环境状况等问题.基于GEE平台及研究区独特地理环境,对遥感生态指数(RSEI)进行改进,采用主成分分析法构建一种新的适用于高寒盐碱地区的盐碱遥感生态指数(SRSEI)作为生态环境质量评价指标,利用Arc GIS 10.3平台、地理探测器等方法在多时空尺度下分析青藏公路那曲至安多段沿线生态环境质量空间分布格局与时间变异趋势,并探究自然和人为等8个控制因子对SRSEI时空变化的驱动机制.结果表明:(1)相较于RSEI,SRSEI对植被更加敏感,对植被稀疏和盐碱化严重地区的分辨能力更强,适合高寒盐碱区生态质量评价.(2)研究区生态环境质量空间尺度上存在明显的地理分异性,生态质量较差的区域主要集中在北部安多县城,质量等级为优和良地区主要分布在中西部和东南部那曲地区;时间尺度上32年间研究区生态环境整体呈改善趋势,中西部和东南部植被覆盖度明显增加,对生态环境有很强的改善作用,改善面积1 425.98 km2,占比99.82%...
青藏公路沿线生态环境是西藏地区生态文明建设的重要组成部分,目前研究青藏高原独特的地理环境普遍存在数据获取困难、时效性过低及未考虑研究区独特的“高寒盐碱”环境状况等问题.基于GEE平台及研究区独特地理环境,对遥感生态指数(RSEI)进行改进,采用主成分分析法构建一种新的适用于高寒盐碱地区的盐碱遥感生态指数(SRSEI)作为生态环境质量评价指标,利用Arc GIS 10.3平台、地理探测器等方法在多时空尺度下分析青藏公路那曲至安多段沿线生态环境质量空间分布格局与时间变异趋势,并探究自然和人为等8个控制因子对SRSEI时空变化的驱动机制.结果表明:(1)相较于RSEI,SRSEI对植被更加敏感,对植被稀疏和盐碱化严重地区的分辨能力更强,适合高寒盐碱区生态质量评价.(2)研究区生态环境质量空间尺度上存在明显的地理分异性,生态质量较差的区域主要集中在北部安多县城,质量等级为优和良地区主要分布在中西部和东南部那曲地区;时间尺度上32年间研究区生态环境整体呈改善趋势,中西部和东南部植被覆盖度明显增加,对生态环境有很强的改善作用,改善面积1 425.98 km2,占比99.82%...