共检索到 123

In geotechnical engineering, the development of efficient and accurate constitutive models for granular soils is crucial. The micromechanical models have gained much attention for their capacity to account for particle-scale interactions and fabric anisotropy, while requiring far less computational resources compared to discrete element method. Various micromechanical models have been proposed in the literature, but none of them have been conclusively shown to agree with the critical state theory given theoretical proof, despite the authors described that their models approximately reach the critical state. This paper modifies the previous CHY micromechanical model that is compatible with the critical state theory based on the assumption that the microscopic force-dilatancy relationship should align with the macroscopic stress-dilatancy relationship. Moreover, under the framework of the CHY model, the fabric anisotropy can be easily considered and the anisotropic critical state can be achieved with the introduction of the fabric evolution law. The model is calibrated using drained and undrained triaxial experiments and the results show that the model reliably replicates the mechanical behaviors of granular materials under both drained and undrained conditions. The compatibility of the model with the critical state theory is verified at both macroscopic and microscopic scales.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107379 ISSN: 0266-352X

This study presents a novel micromorphic continuum model for sand-gravel mixtures with low gravel contents, which explicitly accounts for the influences of the particle size distribution, gravel content, and fabric anisotropy. This model is rigorously formulated based on the principle of macro-microscopic energy conservation and Hamilton's variational principle, incorporating a systematic analysis of the kinematics of coarse and fine particles as well as macro-microscopic deformation differentials. Dispersion equations for plane waves are derived to elucidate wave propagation mechanisms. The results demonstrate that the model effectively captures normal dispersion characteristics and size-dependent effects on wave propagation in these mixtures. In long-wavelength regimes, wave velocities are governed by macroscopic properties, whereas decreasing wavelengths induce interparticle scattering and multiple reflections, attenuating velocities or inhibiting waves, especially when wavelengths approach interparticle spacing. The particle size, porosity, and stiffness ratio primarily influence the macroscopic average stiffness, exhibiting consistent effects on dispersion characteristics across all wavelength domains. In contrast, the particle size ratio and gravel content simultaneously influence both macroscopic mechanical properties and microstructural organization, leading to opposing trends across different wavelength ranges. Model validation against experiments confirms its exceptional predictive ability regarding wave propagation characteristics, including relationships between lowpass threshold frequency, porosity, wave velocity, and coarse particle content. This study provides a theoretical foundation for understanding wave propagation in sand-gravel mixtures and their engineering applications.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107351 ISSN: 0266-352X

Ground subsidence is a common urban geological hazard in several regions worldwide. The settlement of loess fill foundations exhibits more complex subsidence issues under the coupled effects of geomechanical and seepage-driven processes. This study selected 21 ascending Sentinel-1 A radar images from April 2023 to October 2024 to monitor the loess fill foundation in Shaanxi, China. To minimize errors caused by the orbital phase and residual flat-earth phase, this research combined PS-InSAR technology with the three-threshold method to improve the SBAS-InSAR processing workflow, thereby exploring time-series deformation of the loess fill foundation. Compared with conventional SBAS-InSAR technology, the improved SBAS-InSAR technique provided more consistent deformation time-series results with leveling data, effectively capturing the deformation characteristics of the fill foundation. Additionally, geographic information system (GIS) spatial analysis techniques and statistical methods were employed to analyze the overall characteristics and spatiotemporal evolution of the ground surface deformation in the study area. On the other hand, the major drivers of the subsidence in the study area were also discussed based on indoor experiments and engineering geological data. The results showed gradual and temporal shifts of the subsidence center toward areas with the maximum fill depths. In addition, two directions of uneven subsidence were observed within the fill foundation study area. The differences in the fill depth and soil properties caused by the building foundation construction were the main factors contributing to the uneven settlement of the foundations. Foundation deformation was also positively and negatively affected by surface water infiltration. This study integrates remote sensing and engineering geological data to provide a scientific basis for accurately monitoring and predicting loess fill foundation settlement. It also offers practical guidance for regional infrastructure development and geological hazard prevention.

期刊论文 2025-06-25 DOI: 10.1016/j.enggeo.2025.108098 ISSN: 0013-7952

Characterising the mechanical properties of minor bodies is essential for understanding their origin and evolution. Past missions such as Hayabusa2 have landed on asteroids to sample and discover what these bodies are made of. However, there has been conflicting evidence and reports into the physical properties of the granular surface material of these bodies. With future missions such as Japan Aerospace eXploration Agency's Martian Moons eXploration mission landing on Phobos, the understanding and identification of these physical properties is crucial to maximising the scientific output from these missions. Penetrometry, the determination of the reaction force that an object experiences as it penetrates a surface, can help to understand the essential properties of regolith, such as grain size, porosity and cohesion. Results of penetrometry experiments are largely analysed based on empirical models, which presents us with a challenge if we want to apply them to understand granular materials on asteroid surfaces because gravity cannot be eliminated in the laboratory. Hence, it is essential to verify penetrometry as a method and validate penetrometry instrument designs in microgravity. For this purpose, we conducted a microgravity experiment onboard a parabolic flight campaign. Our experiment tested the use of penetrometry in asteroid-analogue environments by investigating samples with varying properties, such as grain size distribution and shape, and then compared to 1 g experiments to understand the role microgravity plays. The experiment provided a substantial database for future analysis. This paper will focus on the design of the experiment and the parabolic flight campaign in which the experiments were conducted. The design decisions and the variables adjusted during the experiment will be discussed, evaluating how these influenced the campaign and its outcomes. We will also provide a snapshot of preliminary results of the data captured during this experiment. For example, we show the effect of cohesion on penetrometer reaction force, with more cohesive materials providing larger reaction forces nearly of the same magnitude of their 1 g counterparts. We also show that penetrometer tip shapes provide different reaction forces and that flat tips provide the largest reaction force compared to the others. The influence of penetration velocity will be investigated further with the aid of theoretical models. Early indications from the results seen so far are promising for future analyses and will provide key information for the analysis of penetrometry data on future missions.

期刊论文 2025-06-03 DOI: 10.1186/s40645-025-00704-8 ISSN: 2197-4284

The unified effective stress equation based on suction stress, a widely accepted method for calculating effective stress in unsaturated soils, provides a closed-form solution that enables the characterization of soils in both saturated and unsaturated states. The effect of desaturation on the water content of natural and treated soils was studied with respect to unconfined compressive strength (UCS) and indirect tensile strength (ITS). The soil's moisture-dependent behavior was characterized by the van Genuchten (Soil Sci Soc Am J 44:892-898, 1980. https://doi.org/10.2136/sssaj1980.03615995004400050002x) and Lu et al. (Water Resour Res, 2010. https://doi.org/10.1029/2009wr008646) models and implemented using the equation. Suction tests were conducted using the dew point and filter paper methods, alongside UCS and ITS tests, on silty clay soil and microsilica-treated soil with microsilica contents of 5%, 10%, and 15%. The equation was validated by comparing mean total stress (p) and mean effective stress (p ') to deviatoric stress (q) and analyzing the friction angle at different suction levels. It proved applicable to both natural and treated soils, with valid moisture content ranges of 4-17.5% and 6-20%, respectively. This study experimentally confirms the equation's effectiveness in characterizing the hydro-mechanical behavior of soils under varying moisture conditions.

期刊论文 2025-06-01 DOI: 10.1007/s10706-025-03123-0 ISSN: 0960-3182

Reactive magnesium oxide (MgO) and ground granulated blast furnace slag (GGBS) are cementitious materials introduced into sludge solidification, which not only reutilizes solid waste but also reduces cement consumption. Through the carbonation of reactive MgO and GGBS, the strength of the solidified sludge is further improved and CO2 is stably sequestrated in carbonate minerals. This paper investigates the strength and microstructural development and CO2 uptake of solidified sludge with varying water content, binder content, and ratio of MgO to GGBS. According to unconfined compressive strength (UCS) tests, when the binder content is 20% and the ratio of reactive MgO to GGBS is 2 & ratio;8, the strength of carbonated samples increases the most, which is six times that of the sample without reactive MgO. With binder content, the CO2 uptake of sample increases up to 2.1 g. Scanning electron microscope (SEM), X-ray diffractometer (XRD), and thermogravimetry-differential thermogravimetry analysis (TG-DTG) tests were conducted to systematically elucidate the micromechanism of carbonation of sludge solidified by reactive MgO and GGBS. Various carbonation and hydration products enhance the soil strength through filling pores and integrating fine particles into bulk aggregates. As the ratio of reactive MgO to GGBS increases, dypingite and hydromagnesite were converted into nesquehonite with better morphological integrity, and thus strengthens the soil skeleton. Diverse calcium carbonate polymorphs from carbonated GGBS also promote sludge strength growth and CO2 sequestration. Test results indicate that the addition of reactive MgO further improves the hydration and carbonation properties of GGBS, so the CO2 uptake grows with the ratio of reactive MgO to GGBS. The synergistic effect of reactive MgO and GGBS increases the carbonation performance of the mixed binder, so likewise the compressive strength.

期刊论文 2025-06-01 DOI: 10.1061/JMCEE7.MTENG-19144 ISSN: 0899-1561

Micro- and nanoplastics (MNPs), pervasive environmental pollutants, contaminate water, soil, air, and the food chain and ultimately accumulate in living organisms. Macrophages are the main immune cells that gather around MNPs and engulf them through the process of phagocytosis. This internalization triggers M1 polarization and the secretion of inflammatory cytokines, including IL-1, IL-18, IL-12, TNF-alpha, and IFN-gamma. Furthermore, MNPs damage mitochondria and lysosomes, causing overactivation of iNOS and excessive production of ROS. This results in cellular stress and induce apoptosis, necroptosis, and, in some cases, metosis in macrophages. The internalization of MNPs also increases the expression of receptors, involving CD36, SR-A, LOX-1, and the macrophage receptor with a collagenous structure (MARCO) while decreasing ABCA-1 and ABCG-1. MNPs in adipose tissue macrophages trigger proinflammatory cytokine secretion, causing adipogenesis, lipid accumulation, insulin resistance, and the secretion of inflammatory cytokines in adipocytes. Various factors influence the rate of MNP internalization by macrophages, including size, charge, and concentration, which affect internalization through passive diffusion. Receptor-mediated phagocytosis of MNPs occurs directly via receptors like T-cell immunoglobulin and mucin domain containing 4 (TIM-4) and MARCO. The attachment of biomolecules, including proteins, antibodies, opsonins, or microbes to MNPs (forming corona structures) promotes indirect receptor-mediated endocytosis, as macrophages possess receptors like TLRs and Fc gamma RIII. MNPs also cause gut dysbiosis, a risk factor for proinflammatory microenvironment and M1 polarization. Here, we review the mechanisms and consequences of MNP macrophage exposure, which is linked to autoimmunity, inflammation, and cardiometabolic syndrome manifestations, including atherosclerosis and obesity, highlighting the immunotoxicity of MNPs.

期刊论文 2025-05-20 DOI: 10.1080/15376516.2025.2500546 ISSN: 1537-6516

In the past three decades, the city of Addis Ababa, a capital city of Africa, has grown significantly in population, facilities, and infrastructure. The area involved in the recent urbanization is prone to slow natural subsidence phenomena that can be accelerated due to anthropogenic factors such as groundwater overexploitation and loading of unconsolidated soils. The main aim of this study is to identify and monitor the areas most affected by subsidence in a context, such as that of many areas of emerging countries, characterized by the lack of geological and technical data. In these contexts, advanced remote sensing techniques can support the assessment of spatial and temporal patterns of ground instability phenomena, providing critical information on potential conditioning and triggering factors. In the case of subsidence, these factors may have a natural or anthropogenic origin or result from a combination of both. The increasing availability of SAR data acquired by the Sentinel-1 mission around the world and the refinement of processing techniques that have taken place in recent years allow one to identify and monitor the critical conditions deriving from the impressive recent expansion of megacities such as Addis Ababa. In this work, the Sentinel-1 SAR images from Oct 2014 to Jan 2021 were processed through the PS-InSAR technique, which allows us to estimate the deformations of the Earth's surface with high precision, especially in urbanized areas. The obtained deformation velocity maps and displacement time series have been validated using accurate second-order geodetic control points and compared with the recent urbanization of the territory. The results demonstrate the presence of areas affected by a vertical rate of displacement of up to 21 mm/year and a maximum displacement of about 13.50 cm. These areas correspond to sectors that are most predisposed to subsidence phenomena due to the presence of recent alluvial deposits and have suffered greater anthropic pressure through the construction of new buildings and the exploitation of groundwater. Satellite interferometry techniques are confirmed to be a reliable tool for monitoring potentially dangerous geological processes, and in the case examined in this work, they represent the only way to verify the urbanized areas exposed to the risk of damage with great effectiveness and low cost, providing local authorities with crucial information on the priorities of intervention.

期刊论文 2025-05-08 DOI: 10.3390/land14051020

This paper presents pore unit assembly-discrete element model (PUA-DEM), a pore-scale hydromechanical framework that resolves interactions between mobile granular particles and multiphase fluids in unsaturated granular media. The framework uniquely integrates DEM with pore-scale hydrodynamic models to capture unsaturated flow dynamics, while leveraging a two-way coupling mechanism to ensure bidirectional fluid-grain feedback through stabilized domain partitioning. Further innovations include a dynamic pore-merging and retriangulation algorithm that enhances computational efficiency for large-scale systems. Validated against experimental data for glass beads and Ottawa sand, PUA-DEM accurately reproduces critical hydromechanical phenomena-including capillary/viscous fingering, wetting-induced granular swelling/collapse, and quasi-static deformation-under diverse saturation and loading regimes. Numerical case studies reveal how capillary forces and wetting fluid saturation collectively govern granular response, from pore-scale meniscus evolution to macroscale flow instabilities. By bridging pore-and particle-scale physics, PUA-DEM advances predictive modeling of partially saturated granular systems, offering transformative insights for geohazard mitigation, sustainable agriculture, pharmaceutical manufacturing, and energy-related engineering applications.

期刊论文 2025-05-02 ISSN: 0027-8424

Further investigation into the progression of soil arching under the impact of noncentered tunnel is warranted. This study addresses this need by examining trapdoor models with varying vertical and horizontal spacings between the tunnel and the trapdoor through the discrete element method. The numerical model underwent calibration utilizing data from previous experiments. The results indicated that the soil arching ratio under the impact of noncentered tunnel exhibits four distinct stages: initial soil arching, maximum soil arching, load recovery, and ultimate stage, aligning with observations unaffected by tunnel presence. The minimal disparity in stress ratio within the stationary region was observed when the vertical spacing between the tunnel and the trapdoor ranges between 150 and 200 mm. Moreover, the disturbed area on the left part of the trapdoor extended significantly beyond the trapdoor width, with notably higher disturbance height compared to the right side. When the tunnel deviated from the centerline of the trapdoor, the stress enhancement on the right side was considerably greater compared to the left. Additionally, the displacement of the trapdoor resulted in a reduction of contact force anisotropy in the soil on the side more distant from the tunnel, while increasing it on the side closer to the tunnel.

期刊论文 2025-05-01 DOI: 10.1002/nag.3962 ISSN: 0363-9061
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共123条,13页