As the regulator of water and nutrient changes in the active layer after permafrost degradation, root signaling substances affect the plant-soil carbon allocation mechanism under climate warming, which is a key issue in the carbon source/sink balance in permafrost regions. To explore how plant root signaling substances regulate carbon allocation in plants and soils under permafrost degradation, the changes in carbon allocation and root signaling substances in the plants and soils of peatland in different permafrost regions at the time of labeling were studied by in situ C-13 labeling experiments. The results showed that the fixed C-13 of Larix gemlini, Carex schumidtii, and Sphagnum leaves after photosynthesis was affected by permafrost degradation. In regions with more continuous permafrost, the trend of the L. gemlini distribution to underground C-13 is more stable. Environmental stress had little effect on the C-13 accumulation of Vaccinium uliginosum. Nonstructural carbohydrates, osmotic regulatory substances, hormones, and anaerobic metabolites were the main root signaling substances that regulate plant growth in the peatlands of the three permafrost regions. The allocation of carbon to the soil is more susceptible to the indirect and direct effects of climate and environmental changes, and tree roots are more susceptible to environmental changes than other plants in isolated patches of permafrost regions. The physical properties of the soil are affected by climate change, and the allocation of carbon is regulated by hormones and osmotic regulators while resisting anoxia in the sporadic regions of permafrost. Carbon allocation in discontinuous permafrost areas is mainly regulated by root substances, which are easily affected by the physical and chemical properties of the soil. In general, the community composition of peatlands in permafrost areas is highly susceptible to environmental changes in the soil, and the allocation of carbon from the plant to the soil is affected by the degradation of the permafrost.
Root-zone soil moisture exerts a fundamental control on vegetation, energy balance, and the carbon cycle in Arctic ecosystems, but it is still not well understood in vast, remote, and understudied regions of discontinuous permafrost. The root-zone soil moisture product (30 m resolution) used in this analysis was retrieved from a time-series P-Band (420-440 MHz) synthetic aperture radar (SAR) backscatter observations (August 2017 & October 2017). While similar approaches have been taken to retrieve surface (0 cm to 5 cm) soil moisture from L-Band (1.2 GHz) SAR backscatter, this is one of the first known attempts at reaching the root-zone in permafrost regions. Here, we analyze secondary factors (excluding primary factors, such as precipitation) controlling summer (August) soil moisture at depths of 6 cm, 12 cm, and 20 cm over a 4500 km(2) area on the Seward Peninsula of Alaska. Using a random forest model, we quantify the impact of topography, vegetation, and meteorological factors on soil moisture distributions. In developing the random forest model, we explore a variety of feature scales (30 m, 60 m, 90 m, 120 m, 180 m, and 240 m), tune hyperparameters (the structure of individual decision trees making up the ensemble including the number and depth of trees), and perform the final feature selection using cross-validated recursive feature elimination. Results suggest that root-zone soil moisture on the Seward Peninsula is primarily controlled by vegetation at 6 cm, but deeper in the soil column topography and meteorological factors, such as predominant winter wind direction and summer insolation, play a larger role. The random forest model accounts for 40% to 60% of the variation observed (R-2 = 0.44 at 6 cm, R-2 = 0.52 at 12 cm, R-2 = 0.58 at 20 cm). These results indicate that vegetation is the dominant control on soil moisture shallow in the soil column, but the impact of vegetation does not extend to deeper layers retrieved from P-Band SAR backscatter.
Long-term and high-quality surface soil moisture (SSM) and root-zone soil moisture (RZSM) data is crucial for understanding the land-atmosphere interactions of the Qinghai-Tibet Plateau (QTP). More than 40% of QTP is covered by permafrost, yet few studies have evaluated the accuracy of SSM and RZSM products derived from microwave satellite, land surface models (LSMs) and reanalysis over that region. This study tries to address this gap by evaluating a range of satellite and reanalysis estimates of SSM and RZSM in the thawed soil overlaying permafrost in the QTP, using in-situ measurements from sixteen stations. Here, seven SSM products were evaluated: Soil Moisture Active Passive L3 (SMAP L3) and L4 (SMAP-L4), Soil Moisture and Ocean Salinity in version IC (SMOS IC), Land Parameter Retrieval Model (LPRM) Advanced Microwave Scanning Radiometer 2 (AMSR2), European Space Agency Climate Change Initiative (ESA CCI), Advanced Scatterometer (ASCAT), and the fifth generation of the land component of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERAS-Land). We also evaluated three RZSM products from SMAP-L4, ERA5-Land, and the Noah land surface model driven by Global Land Data Assimilation System (GLDAS-Noah). The assessment was conducted using five statistical metrics, i. e. Pearson correlation coefficient (R), bias, slope, Root Mean Square Error (RMSE), and unbiased RMSE (ubRMSE) between SSM or RZSM products and in-situ measurements. Our results showed that the ESA CCI, SMAP-L4 and SMOS-IC SSM products outperformed the other SSM products, indicated by higher correlation coefficients (R) (with a median R value of 0.63, 0.44 and 0.57, respectively) and lower ubRMSE (with a median ubRMSE value of 0.05, 0.04 and 0.07 m(3)/m(3), respectively). Yet, SSM overestimation was found for all SSM products. This could be partly attributed to ancillary data used in the retrieval (e.g. overestimation of land surface temperature for SMAP-L3) and to the fact that the products (e.g. LPRM) more easily overestimate the in-situ SSM when the soil is very dry. As expected, SMAP-L3 SSM performed better in areas with sparse vegetation than with dense vegetation covers. For RZSM products, SMAP-L4 and GLDAS-Noah (R = 0.66 and 0.44, ubRMSE = 0.03 and 0.02 m(3)/m(3), respectively) performed better than ERAS-Land (R = 0.46; ubRMSE = 0.03 m(3)/m(3)). It is also found that all RZSM products were unable to capture the variations of in-situ RZSM during the freezing/thawing period over the permafrost regions of QTP, due to large deviation for the ice-water phase change simulation and the lack of consideration for unfrozen-water migration during freezing processes in the LSMs.
Winter temperatures are projected to increase in Central Europe. Subsequently, snow cover will decrease, leading to increased soil temperature variability, with potentially different consequences for soil frost depending on e.g. altitude. Here, we experimentally evaluated the effects of increased winter soil temperature variability on the root associated mycobiome of two plant species (Calluna vulgaris and Holcus lanatus) at two sites in Germany; a colder and wetter upland site with high snow accumulation and a warmer and drier lowland site, with low snow accumulation. Mesocosm monocultures were set-up in spring 2010 at both sites (with soil and plants originating from the lowland site). In the following winter, an experimental warming pulse treatment was initiated by overhead infrared heaters and warming wires at the soil surface for half of the mesocosms at both sites. At the lowland site, the warming treatment resulted in a reduced number of days with soil frost as well as increased the average daily temperature amplitude. Contrary, the treatment caused no changes in these parameters at the upland site, which was in general a much more frost affected site. Soil and plant roots were sampled before and after the following growing season (spring and autumn 2011). High-throughput sequencing was used for profiling of the root-associated fungal (ITS marker) community (mycobiome). Site was found to have a profound effect on the composition of the mycobiome, which at the upland site was dominated by fast growing saprotrophs (Mortierellomycota), and at the lowland site by plant species-specific symbionts (e.g. Rhizoscyphus ericae and Microdochium bolleyi for C. vulgaris and H. lanatus respectively). The transplantation to the colder upland site and the temperature treatment at the warmer lowland site had comparable consequences for the mycobiome, implying that winter climate change resulting in higher temperature variability has large consequences for mycobiome structures regardless of absolute temperature of a given site.
By altering the physical properties of soil through root activity, plants can act as important agents in affecting soil hydrothermal properties. However, we still know little about how plant roots regulate these properties in certain ecosystems, such as alpine meadows. Thus, we studied the influence of roots on soil hydrothermal properties in the Qinghai-Tibet Plateau (QTP). Root biomass as well as soil physicochemical and hydrothermal properties were examined at a depth of 0-30 cm at three study sites in the QTP. The relationship between root biomass and saturated soil hydraulic conductivity (K-s) was examined, as was the applicability of common soil hydrothermal properties models to the alpine meadow system. Results revealed that approximately 91.10%, 72.52%, and 76.84% of root biomass was located in the top 0-10 cm of soil at Maqu, Arou, and Naqu, respectively. Compared with the bulk soil, the water-holding capacity of rhizosphere soil was enhanced by 20%-50%, while K-s was decreased by at least 2- to 3-fold. The thermal conductivity (lambda) of rhizosphere soils was lower than that of the bulk soil by 0.23-0.82 W m(-1).K-1 on average. Lastly, soil hydrothermal properties models that do not explicitly consider root effects overestimated the Ks and lambda in the rhizosphere soil of these systems. Overall, our results revealed distinctive differences in soil hydrothermal properties between the rhizosphere soil and the bulk soil in the QTP. This research has important implications for future modeling of soil hydrothermal processes of alpine meadow soils.
Long-term and high-quality surface soil moisture (SSM) and root-zone soil moisture (RZSM) data is crucial for understanding the land-atmosphere interactions of the Qinghai-Tibet Plateau (QTP). More than 40% of QTP is covered by permafrost, yet few studies have evaluated the accuracy of SSM and RZSM products derived from microwave satellite, land surface models (LSMs) and reanalysis over that region. This study tries to address this gap by evaluating a range of satellite and reanalysis estimates of SSM and RZSM in the thawed soil overlaying permafrost in the QTP, using in-situ measurements from sixteen stations. Here, seven SSM products were evaluated: Soil Moisture Active Passive L3 (SMAP L3) and L4 (SMAP-L4), Soil Moisture and Ocean Salinity in version IC (SMOS IC), Land Parameter Retrieval Model (LPRM) Advanced Microwave Scanning Radiometer 2 (AMSR2), European Space Agency Climate Change Initiative (ESA CCI), Advanced Scatterometer (ASCAT), and the fifth generation of the land component of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERAS-Land). We also evaluated three RZSM products from SMAP-L4, ERA5-Land, and the Noah land surface model driven by Global Land Data Assimilation System (GLDAS-Noah). The assessment was conducted using five statistical metrics, i. e. Pearson correlation coefficient (R), bias, slope, Root Mean Square Error (RMSE), and unbiased RMSE (ubRMSE) between SSM or RZSM products and in-situ measurements. Our results showed that the ESA CCI, SMAP-L4 and SMOS-IC SSM products outperformed the other SSM products, indicated by higher correlation coefficients (R) (with a median R value of 0.63, 0.44 and 0.57, respectively) and lower ubRMSE (with a median ubRMSE value of 0.05, 0.04 and 0.07 m(3)/m(3), respectively). Yet, SSM overestimation was found for all SSM products. This could be partly attributed to ancillary data used in the retrieval (e.g. overestimation of land surface temperature for SMAP-L3) and to the fact that the products (e.g. LPRM) more easily overestimate the in-situ SSM when the soil is very dry. As expected, SMAP-L3 SSM performed better in areas with sparse vegetation than with dense vegetation covers. For RZSM products, SMAP-L4 and GLDAS-Noah (R = 0.66 and 0.44, ubRMSE = 0.03 and 0.02 m(3)/m(3), respectively) performed better than ERAS-Land (R = 0.46; ubRMSE = 0.03 m(3)/m(3)). It is also found that all RZSM products were unable to capture the variations of in-situ RZSM during the freezing/thawing period over the permafrost regions of QTP, due to large deviation for the ice-water phase change simulation and the lack of consideration for unfrozen-water migration during freezing processes in the LSMs.
Environmental changes feedback to climate through their impact on soil functions such as carbon (C) and nutrient sequestration. Abiotic conditions and the interactions between above- and belowground biota drive soil responses to environmental change but these (a)biotic interactions are challenging to study. Nonetheless, better understanding of these interactions would improve predictions of future soil functioning and the soil-climate feedback and, in this context, permafrost soils are of particular interest due to their vast soil C-stores. We need new tools to isolate abiotic (microclimate, chemistry) and biotic (roots, fauna, microorganisms) components and to identify their respective roles in soil processes. We developed a new experimental setup, in which we mimic thermokarst (permafrost thaw-induced soil subsidence) by fitting thawed permafrost and vegetated active layer sods side by side into mesocosms deployed in a subarctic tundra over two growing seasons. In each mesocosm, the two sods were separated from each other by barriers with different mesh sizes to allow varying degrees of physical connection and, consequently, (a)biotic exchange between active layer and permafrost. We demonstrate that our mesh-approach succeeded in controlling 1) lateral exchange of solutes between the two soil types, 2) colonization of permafrost by microbes but not by soil fauna, and 3) ingrowth of roots into permafrost. In particular, experimental thermokarst induced a similar to 60% decline in permafrost nitrogen (N) content, a shift in soil bacteria and a rapid buildup of root biomass (+33.2 g roots m(-2) soil). This indicates that cascading plant-soil-microbe linkages are at the heart of biogeochemical cycling in thermokarst events. We propose that this novel setup can be used to explore the effects of (a)biotic ecosystem components on focal biogeochemical processes in permafrost soils and beyond.
Air temperatures and precipitation are predicted to increase in the future, especially at high latitudes and particularly so during winter. In contrast to air temperatures, changes in soil temperatures are more difficult to predict, as the fate of the insulating snow cover is crucial in this respect. Soil conditions can also be affected by rain-on-snow events and warm spells during winter, resulting in freeze-thaw cycles, compacted snow, ice encasement and local flooding. These adverse conditions during winter could counteract the otherwise positive effects of climate change on forest growth and productivity. For studying the effects of different winter and snow conditions on young Downy birch (Betula pubescens Ehrh.) seedlings, we carried out a laboratory experiment with birch seedlings subjected to four different winter scenarios: snow covering the seedlings (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow at all (NO SNOW). After the winter treatments we simulated a spring and early summer period of 9.5 weeks, and monitored the growth by measuring shoot and root biomass of the seedlings, and starch and soluble sugar concentrations. We also assessed the stress experienced by the seedlings by measuring leaf chlorophyll fluorescence and gas exchange. Although no difference in mortality was observed between the treatments, the seedlings in the SNOW and ICE treatments had significantly higher shoot and root biomass compared with those in the FLOOD and NO SNOW treatments. We found higher starch concentrations in roots of the seedlings in the SNOW and ICE treatments, compared with those in the FLOOD and NO SNOW treatments, although photosynthesis did not differ. Our results suggest a malfunction of carbohydrate distribution in the seedlings of the FLOOD and NO SNOW treatments, probably resulting from decreased sinks. The results underline the importance of an insulating and protecting snow cover for small tree seedlings, and that future winters with changed snow pattern might affect the growth of tree seedlings and thus possibly species composition and forest productivity.
1. Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which increases accessibility of nutrients in the deeper soil layers. Both processes may initiate shifts in tundra vegetation composition. It is important to understand the effects of these two processes on tundra plant functional types. 2. We manipulated soil thawing depth and nutrient availability at a Northeast-Siberian tundra site to investigate their effects on above- and below-ground responses of four plant functional types (grasses, sedges, deciduous shrubs and evergreen shrubs). Seasonal thawing was accelerated with heating cables at c. 15 cm depth without warming the surface soil, whereas nutrient availability was increased in the surface soil by adding slow-release NPK fertilizer at c. 5 cm depth. A combination of these two treatments was also included. This is the first field experiment specifically investigating the effects of accelerated thawing in tundra ecosystems. 3. Deep soil heating increased the above-ground biomass of sedges, the deepest rooted plant functional type in our study, but did not affect biomass of the other plant functional types. In contrast, fertilization increased above-ground biomass of the two dwarf shrub functional types, both of which had very shallow root systems. Grasses showed the strongest response to fertilization, both above-and below-ground. Grasses were deep-rooted, and they showed the highest plasticity in terms of vertical root distribution, as grass root distribution shifted to deep and surface soil in response to deep soil heating and surface soil fertilization respectively. 4. Synthesis. Our results indicate that increased thawing depth can only benefit deep-rooted sedges, while the shallow-rooted dwarf shrubs, as well as flexible-rooted grasses, take advantage of increased nutrient availability in the upper soil layers. Our results suggest that grasses have the highest root plasticity, which enables them to be more competitive in rapidly changing environments. We conclude that root vertical distribution strategies are important for vegetation responses to climate-induced increases in soil nutrient availability in Arctic tundra, and that future shifts in vegetation composition will depend on the balance between changes in thawing depth and nutrient availability in the surface soil.
Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow- and/or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2mm pore size) or excluded root ingrowth (50m pore size) for up to 29months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P<0.05; R-2=0.25-0.46) than to root biomass, snow or soil frost, or winter soil temperature (R-2<0.10). Root ingrowth was positively related to soil frost (P<0.01; R-2=0.28), suggesting that trees compensate for overwinter root mortality caused by soil freezing by re-allocating resources towards root production. At the sites with the deepest snow cover, root ingrowth reduced nitrification rates by 30% (P<0.01), showing that tree roots exert significant influence over nitrification, which declines with reduced snow cover. If soil freezing intensifies over time, then greater compensatory root growth may reduce nitrification rates directly via plant-microbe N competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests.