共检索到 123

Study region: The source area of the Yangtze River, a typical catchment in the cryosphere on the Tibet Plateau, was used to develop and validate a distributed hydrothermal coupling model. Study focus: Climate change has caused significant changes in hydrological processes in the cryosphere, and related research has become hot topic. The source area of the Yangtze River (SAYR) is a key catchment for studies of hydrological processes in the cryosphere, which contains widespread glacier, snow, and permafrost. However, the current hydrological modeling of the SAYR rarely depicts the process of glacier/snow and permafrost runoff from the perspective of coupled water and heat transfer, resulting in distortion of simulations of hydrological processes. Therefore, we developed a distributed hydrothermal coupling model, namely WEP-SAYR, based on the WEP-L (Water and energy transfer process in large river basins) model by introducing modules for glacier and snow melt and permafrost freezing and thawing. New hydrological insights for the region: In the WEP-SAYR model, the soil hydrothermal transfer equations were improved, and a freezing point equation for permafrost was introduced. In addition, the glacier and snow meltwater processes were described using the temperature index model. Compared to previously applied models, the WEP-SAYR portrays in more detail glacier/ snow melting, dynamic changes in permafrost water and heat coupling, and runoff dynamics, with physically meaningful and easily accessible model parameters. The model can describe the soil temperature and moisture changes in soil layers at different depths from 0 to 140 cm. Moreover, the model has a good accuracy in simulating the daily/monthly runoff and evaporation. The Nash-Sutcliffe efficiency exceeded 0.75, and the relative error was controlled within +/- 20 %. The results showed that the WEP-SAYR model balances the efficiency of hydrological simulation in large scale catchments and the accurate portrayal of the cryosphere elements, which provides a reference for hydrological analysis of other catchments in the cryosphere.

期刊论文 2024-12-01 DOI: 10.1016/j.ejrh.2024.102057

Atmospheric Brown Carbon (BrC) with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing. Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality, human health and climate change. This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1 degrees x 0.1 degrees, based on compiled emission factors and detailed activity data. The primary BrC emission in China was about 593 Gg (500-735 Gg as interquartile range) in 2016, contributing to 7% (5%-8%) of a previously estimated global total BrC emission. Residential fuel combustion was the largest source of primary BrC in China, with the contribution of 67% as the national average but ranging from 25% to 99% among different provincial regions. Significant spatial disparities were also observed in the relative shares of different fuel types. Coal combustion contribution varied from 8% to 99% across different regions. Heilongjiang and North China Plain had high emissions of primary BrC. Generally, on the national scale, spatial distribution of BrC emission density per area was aligned with the population distribution. Primary BrC emission from combustion sources in China have been declined since a peak of similar to 1300 Gg in 1980, but the temporal trends were distinct in different sectors. The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of human health protection and climate change.

期刊论文 2024-12-01 DOI: 10.1007/s11769-024-1463-4 ISSN: 1002-0063

There is 78 % permafrost and seasonal frozen soil in the Yangtze River's Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region's water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.

期刊论文 2024-12-01 DOI: 10.1016/j.geosus.2024.06.004 ISSN: 2096-7438

Under the interference of climate warming and human engineering activities, the degradation of permafrost causes the frequent occurrence of geological disasters such as uneven foundation settlement and landslides, which brings great challenges to the construction and operational safety of road projects. In this paper, the spatial and temporal evolution of surface deformations along the Beihei Highway was investigated by combining the SBAS-InSAR technique and the surface frost number model after considering the vegetation factor with multi-source remote sensing observation data. After comprehensively considering factors such as climate change, permafrost degradation, anthropogenic disturbance, and vegetation disturbance, the surface uneven settlement and landslide processes were analyzed in conjunction with site surveys and ground data. The results show that the average deformation rate is approximately -16 mm/a over the 22 km of the study area. The rate of surface deformation on the pavement is related to topography, and the rate of surface subsidence on the pavement is more pronounced in areas with high topographic relief and a sunny aspect. Permafrost along the roads in the study area showed an insignificant degradation trend, and at landslides with large surface deformation, permafrost showed a significant degradation trend. Meteorological monitoring data indicate that the annual minimum mean temperature in the study area is increasing rapidly at a rate of 1.266 degrees C/10a during the last 40 years. The occurrence of landslides is associated with precipitation and freeze-thaw cycles. There are interactions between permafrost degradation, landslides, and vegetation degradation, and permafrost and vegetation are important influences on uneven surface settlement. Focusing on the spatial and temporal evolution process of surface deformation in the permafrost zone can help to deeply understand the mechanism of climate change impact on road hazards in the permafrost zone.

期刊论文 2024-11-01 DOI: 10.3390/rs16214091

Glacial changes are crucial to regional water resources and ecosystems in the Sawir Mountains. However, glacial changes, including the mass balance and glacial meltwater of the Sawir Mountains, have sparsely been reported. Three model calibration strategies were constructed including a regression model based on albedo and in-situ mass balance of Muz Taw Glacier (A-Ms), regression model based on albedo and geodetic mass balance of valley, cirque, and hanging glaciers (A-Mr), and degree-day model (DDM) to obtain a reliable glacier mass balance in the Sawir Mountains and provide the latest understanding in the contribution of glacial meltwater runoff to regional water resources. The results indicated that the glacial albedo reduction was significant from 2000 to 2020 for the entire Sawir Mountains, with a rate of 0.015 (10a)- 1, and the spatial pattern was higher in the east compared to the west. Second, the three strategies all indicated that the glacier mass balance has been continuously negative during the past 20 periods, and the average annual glacier mass balance was -1.01 m w.e. Third, the average annual glacial meltwater runoff in the Sawir Mountains from 2000 to 2020 was 22 x 106 m3, and its

期刊论文 2024-09-20 DOI: 10.1016/j.scitotenv.2024.173703 ISSN: 0048-9697

Sources and implications of black carbon (BC) and mineral dust (MD) on two glaciers on the central Tibetan Plateau were estimated based on in situ measurements and modeling. The results indicated that BC and MD accounted for 11 +/- 1% and 4 +/- 0% of the albedo reduction relative to clean snow, while the radiative forcing varied between 11 and 196 and 1-89 W m(-2), respectively. Assessment of BC and MD contributions to the glacier melt can reach up 88 to 434 and 35 to 187 mm w.e., respectively, contributing 9-23 and 4-10% of the total glacier melt. A footprint analysis indicated that BC and MD deposited on the glaciers originated mainly from the Middle East, Central Asia, North China and South Asia during the study period. Moreover, a potentially large fraction of BC may have originated from local and regional fossil fuel combustion. This study suggests that BC and MD will enhance glacier melt and provides a scientific basis for regional mitigation efforts.

期刊论文 2024-09-01 DOI: http://dx.doi.org/10.1017/jog.2019.100 ISSN: 0022-1430

This study uses a new dataset on gauge locations and catchments to assess the impact of 21st-century climate change on the hydrology of 221 high-mountain catchments in Central Asia. A steady-state stochastic soil moisture water balance model was employed to project changes in runoff and evaporation for 2011-2040, 2041-2070, and 2071-2100, compared to the baseline period of 1979-2011. Baseline climate data were sourced from CHELSA V21 climatology, providing daily temperature and precipitation for each subcatchment. Future projections used bias-corrected outputs from four General Circulation Models under four pathways/scenarios (SSP1 RCP 2.6, SSP2 RCP 4.5, SSP3 RCP 7.0, SSP5 RCP 8.5). Global datasets informed soil parameter distribution, and glacier ablation data were integrated to refine discharge modeling and validated against long-term catchment discharge data. The atmospheric models predict an increase in median precipitation between 5.5% to 10.1% and a rise in median temperatures by 1.9 degrees C to 5.6 degrees C by the end of the 21st century, depending on the scenario and relative to the baseline. Hydrological model projections for this period indicate increases in actual evaporation between 7.3% to 17.4% and changes in discharge between + 1.1% to -2.7% for the SSP1 RCP 2.6 and SSP5 RCP 8.5 scenarios, respectively. Under the most extreme climate scenario (SSP5-8.5), discharge increases of 3.8% and 5.0% are anticipated during the first and second future periods, followed by a decrease of -2.7% in the third period. Significant glacier wastage is expected in lower-lying runoff zones, with overall discharge reductions in parts of the Tien Shan, including the Naryn catchment. Conversely, high-elevation areas in the Gissar-Alay and Pamir mountains are projected to experience discharge increases, driven by enhanced glacier ablation and delayed peak water, among other things. Shifts in precipitation patterns suggest more extreme but less frequent events, potentially altering the hydroclimate risk landscape in the region. Our findings highlight varied hydrological responses to climate change throughout high-mountain Central Asia. These insights inform strategies for effective and sustainable water management at the national and transboundary levels and help guide local stakeholders.

期刊论文 2024-09-01 DOI: 10.1007/s10584-024-03799-y ISSN: 0165-0009

Vehicle -emitted fine particulate matter (PM 2.5 ) has been associated with significant health outcomes and environmental risks. This study estimates the contribution of traffic -related exhaust emissions (TREE) to observed PM 2.5 using a novel factorization framework. Specifically, co -measured nitrogen oxides (NO x ) concentrations served as a marker of vehicle -tailpipe emissions and were integrated into the optimization of a Non -negative Matrix Factorization (NMF) analysis to guide the factor extraction. The novel TREE-NMF approach was applied to long-term (2012 - 2019) PM 2.5 observations from air quality monitoring (AQM) stations in two urban areas. The extracted TREE factor was evaluated against co -measured black carbon (BC) and PM 2.5 species to which the TREE-NMF optimization was blind. The contribution of the TREE factor to the observed PM 2.5 concentrations at an AQM station from the first location showed close agreement ( R 2 = 0 .79) with monitored BC data. In the second location, a comparison of the extracted TREE factor with measurements at a nearby Surface PARTiculate mAtter Network (SPARTAN) station revealed moderate correlations with PM 2.5 species commonly associated with fuel combustion, and a good linear regression fit with measured equivalent BC concentrations. The estimated concentrations of the TREE factor at the second location accounted for 7 - 11 % of the observed PM 2.5 in the AQM stations. Moreover, analysis of specific days known to be characterized by little traffic emissions suggested that approximately 60 - 78 % of the traffic -related PM 2.5 concentrations could be attributed to particulate traffic -exhaust emissions. The methodology applied in this study holds great potential in areas with limited monitoring of PM 2.5 speciation, in particular BC, and its results could be valuable for both future environmental health research, regional radiative forcing estimates, and promulgation of tailored regulations for traffic -related air pollution abatement.

期刊论文 2024-08-25 DOI: 10.1016/j.scitotenv.2024.173715 ISSN: 0048-9697

Soil organic carbon (SOC) plays a vital role in the global carbon cycle and soil quality assessment. The Qinghai-Tibet Plateau is one of the largest plateaus in the world. Therefore, in this region, SOC density and the spatial distribution of SOC are highly sensitive to climate change and human intervention. Given the insufficient understanding of the spatial distribution of SOC density in the Qinghai-Tibet Plateau, this study utilized machine learning (ML) algorithms to estimate the density and distribution pattern of SOC density in the region. In this study, we first collected multisource data, such as optical remote sensing data, synthetic aperture radar) (SAR) data, and other environmental variables, including socioeconomic factors, topographic factors, climate factors, and soil properties. Then, we used ML algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), to estimate the topsoil SOC density and spatial distribution patterns of SOC density. We also aimed to investigate any driving factors. The results are as follows: (1) The average SOC density is 5.30 kg/m(2). (2) Among the three ML algorithms used, LightGBM showed the highest validation accuracy (R-2 = 0.7537, RMSE = 2.4928 kgC/m(2), MAE = 1.7195). (3) The normalized difference vegetation index (NDVI), valley depth (VD), and temperature are crucial in predicting the spatial distribution of topsoil SOC density. Feature importance analyses conducted using the three ML models all showed these factors to be among the top three in importance, with contribution rates of 14.08%, 12.29%, and 14.06%; 17.32%, 20.73%, and 24.62%; and 16.72%, 11.96%, and 20.03%. (4) Spatially, the southeastern part of the Qinghai-Tibet Plateau has the highest topsoil SOC density, with recorded values ranging from 8.41 kg/m(2) to 13.2 kg/m(2), while the northwestern part has the lowest density, with recorded values ranging from 0.85 kg/m(2) to 2.88 kg/m(2). Different land cover types showed varying SOC density values, with forests and grasslands having higher SOC densities compared to urban and bare land areas. The findings of this study provide a scientific basis for future soil resource management and improved carbon sequestration accounting in the Qinghai-Tibet Plateau.

期刊论文 2024-08-01 DOI: 10.3390/rs16163006

Through a comprehensive investigation into the historical profiles of black carbon derived from ice cores, the spatial distributions of light-absorbing impurities in snowpit samples, and carbon isotopic compositions of black carbon in snowpit samples of the Third Pole, we have identified that due to barriers of the Himalayas and remove of wet deposition, local sources rather than those from seriously the polluted South Asia are main contributors of light-absorbing impurities in the inner part of the Third Pole. Therefore, reducing emissions from residents of the Third Pole themselves is a more effective way of protecting the glaciers of the inner Third Pole in terms of reducing concentrations of light-absorbing particles in the atmosphere and on glaciers.

期刊论文 2024-08-01 DOI: http://dx.doi.org/10.1016/j.envpol.2024.124181 ISSN: 0269-7491
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共123条,13页