共检索到 3

Despite the extensive research conducted on plant-soil-water interactions, the understanding of the role of plant water sources in different plant successional stages remains limited. In this study, we employed a combination of water isotopes (delta 2H and delta 18O) and leaf delta 13C to investigate water use patterns and leaf water use efficiency (WUE) during the growing season (May to September 2021) in Hailuogou glacier forefronts in China. Our findings revealed that surface soil water and soil nutrient gradually increased during primary succession. Dominant plant species exhibited a preference for upper soil water uptake during the peak leaf out period (June to August), while they relied more on lower soil water sources during the post-leaf out period (May) or senescence (September to October). Furthermore, plants in late successional stages showed higher rates of water uptake from uppermost soil layers. Notably, there was a significant positive correlation between the percentage of water uptake by plants and available soil water content in middle and late stages. Additionally, our results indicated a gradual decrease in WUE with progression through succession, with shallow soil moisture utilization negatively impacting overall WUE across all succession stages. Path analysis further highlighted that surface soil moisture (0- 20 cm) and middle layer nutrient availability (20- 50 cm) played crucial roles in determining WUE. Overall, this researchemphasizes the critical influence of water source selection on plant succession dynamics while elucidating un- derlying mechanisms linking succession with plant water consumption.

2024-06-01 Web of Science

Antarctica is highly susceptible to climate and environmental change. In particular, climate change can lead to the warming of permafrost and the development of active layers in permafrost areas, resulting in variations in hydrological characteristics. This study investigated the hydrological process associated with a stream in a snow-dominated headwater catchment on King George Island, maritime Antarctica, during austral summer using the chemical and isotopic compositions. During the cold period, as the snowmelt rate decreased, the amount of new water also decreased. Hence, the electrical conductivity (EC) increased because the contribution of supra-permafrost groundwater (old water), which occurs in the active layer, increased more during the cold period than during the warm period. Moreover, diel variations in the stable isotopic compositions (delta O-18 and delta D) of snowmelt (new water) were clearly observed in the stream water, indicating that runoff was the dominant flow path of snowmelt during the cold period. In contrast, during the warm period, the amount of snowmelt increased and the EC value decreased as a result of the dilution effect. In addition, compared with the cold period, diel variations in the isotopic compositions of the stream water were attenuated during the warm period. This attenuation effect was not due to the increased contribution of old water; instead, it was due to the contribution of new water with a low-amplitude signal in the diel variations of the isotopic compositions. Thus, the observed diel variations in the isotopic compositions of the stream water during cold and warm periods suggest that this catchment is dominated by new water. These findings are helpful for improving our understanding of climate-related changes in the hydrological pathways and water-related ecosystems of polar catchments.

2022-06-15 Web of Science

Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved.

2016-09-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页