Correlations between the mechanical properties and surface scratch resistance of polylactic acid (PLA) are investigated via tensile and scratch tests on samples after degradation in soil for various times. The results show that the tensile yield strength of PLA is inversely proportional to the natural logarithm of the degradation time, and the scratch resistance and fracture toughness of PLA and the temperature rise near the indenter all increase and then decrease. The surface crystallinity of PLA also increases and then decreases, indicating that it and the scratch resistance are closely related. These findings provide useful information about how PLA behaves under degradation conditions. (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.
Geopolymers are recently recognized as superior sustainable alkali-activated materials (AAMs) for soil stabilization because of their strong bonding capabilities. However, the influence of freeze-thaw cycles (FTCs) on the performance of geopolymer-stabilized soils reinforced with fibers remains largely unexplored. In the current study, for the first time, the durability of polypropylene fiber (PPF) reinforced clayey soil stabilized with fly ash (FA) based geopolymer is investigated under FTCs, evaluating its performance during prolonged seasonal freezing. The effects of repeated FTCs (0, 1, 3, 6, and 12 cycles), different contents of alkali-activated FA (5 %, 10 %, and 15 %), varying PPF percentages (0 %, 0.4 %, 0.8 %, and 1.2 % with a length of 6 mm), and curing time (7 and 28 days) on the properties of stabilized samples have been determined through tests including standard Proctor compaction, unconfined compressive strength (UCS), mass loss, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The results revealed that a 0.4 % PPF concentration maximized strength in FA-based geopolymer samples by restricting crack propagation, irrespective of FA content, number of FTCs, or curing time. However, higher PPF contents lowered UCS values and Young's modulus due to fiber clustering and increased failure strain, respectively. Generally, an initial increase in UCS, Young's modulus, and resilience modulus (MR) of stabilized samples occurred with more FTCs because of their dense structure, delayed pore formation, and continued geopolymerization process and followed by a constant or decreasing trend in strength after 6 (or 3 in some cases) FTCs due to ice expansion in created air voids. Longer curing time resulted in denser samples with improved resistance to FTCs, especially under 12 FTCs. Moreover, samples with 10 % alkali-activated FA demonstrated the least susceptibility to FTCs. While initial FTCs caused no mass loss, subsequent cycles led to increased mass loss and remained below 2 % for all samples. Microstructural analysis results corroborated UCS test results. Although the primary chemical composition remained unchanged after 12 FTCs, these cycles induced morphological changes such as critical void formation and cracking within the gel structure. The stabilization approach proposed in this study demonstrated sustained UCS after 12 FTCs, promising reduced maintenance costs and extended service life in regions with prevalent freeze-thaw damage.
Tetracycline (TC) is effectively used antibiotic in animal husbandry and healthcare, has damaged soil ecosystems due to its misuse and residues in the soil environment. Therefore, the main objective of this study was to abate TC in hyphosphere soil by inoculating soil with arbuscular mycorrhizal fungi (AMF) and to explore its potential mechanisms. The results showed that under TC stress, inoculation with AMF reduced the contents of soil organic carbon and total nitrogen, and increased the activities of beta-glucosidase and urease in hyphosphere soil. The relative abundance of bacterial genera such as Pseudomaricurvus in the hyphosphere soil increased significantly after AMF inoculation. In addition, four bacterial genera, Cellulosimicrobium, Roseibium, Citromicrobium, and Hephaestia, were uniquely present in AMF-inoculated soil, and the functional genes Unigene456231 and Unigene565663 were significantly enriched in the hyphosphere soil. This suggests that the reshaping of the bacterial community and the enrichment of functional genes in the hyphosphere soil led to changes in the bacterial community's functions, which promoted the gradual abatement of residual TC in the soil. It should be noted that this study was solely based on a single pot experiment, and its conclusions may have certain limitations in broader ecological application scenarios. Subsequent studies will further investigate the remediation effects under different environmental factors and field trials. This study provides new insights into the use of AMF as a biological agent for the remediation of TC-contaminated soils, offering new perspectives for promoting sustainable agricultural development.
Background: The detection of metal ions represents a critical analytical challenge due to their persistent environmental accumulation and severe toxic effects on ecosystems and human health. Even at trace concentrations, toxic metal ions can cause irreversible biological damage, necessitating the development of sensitive, selective, and rapid monitoring platforms. Advanced detection systems are urgently needed for environmental surveillance, industrial effluent control, and food/water safety applications where regulatory compliance and early warning capabilities are paramount. Results: This work presents an etching-based sensor array to identify and discriminate Pb2+, Hg2+, Cu2+, NO2-, Cr6+, and As3+ as hazardous ions. Au@Ag core@shell nanorods were utilized as sensing elements in different pH values in the presence of thiosulfate and thiourea as key elements in the oxidation of nanoparticles. Analytes' response patterns in the range of 1.0-30 mu M were analyzed via various methods, including heatmap, bar plot, and linear discriminant analysis (LDA), showing perfect discrimination. To ensure the sensor's applicability in real samples, we conducted meticulous testing on different sources, including tap water, well water, tilapia pond water, tomato soil extract, and urine samples. Significance: The sensor demonstrated excellent performance in classifying mixture samples and providing precise and accurate detection in real samples. This innovation offers a promising future for etching-based sensor arrays by utilizing core-shell nanoparticles as sensitive sensing elements and a significant contribution to global efforts in safeguarding public health and the environment from the threat of pollutants.
This study addresses the challenges of excessive fluidity and poor bonding performance in ultraretarded solidification mine tailings waste-based shotcrete. The research investigates the fundamental mechanical properties of this material by optimizing the proportions of mineral powder (A), soil-rock waste (B), and water content (C). Comprehensive analysis was conducted through mechanical property testing, scanning electron microscopy (SEM), and X-ray diffraction (XRD) to elucidate the hydration mechanisms. The results demonstrate that a mineral powder content of 20 % (A1B2C3 to A1B1C1) yields optimal performance, with compressive, splitting tensile, and flexural strengths reaching 138.5 %, 163 %, and 154 % of baseline values, respectively. Maximum compressive strengths of 16.12 MPa, 24.18 MPa, and 32.08 MPa were achieved under specific mix conditions (C1A1B1). Additionally, increasing the content of A and C was found to extend the setting time of the cementitious material. The optimal mix ratio, comprising 20 % A, 25 % B, and 4 % C, exhibited enhanced hydration degree and superior macroscopic performance. Field construction tests confirmed that the material's viscosity, fluidity, and rapid-setting properties meet practical engineering requirements.
Fracture toughness and cohesive fracturing properties of two classes of sandy-clay soils, (A) with fine and (B) coarse grains and stabilized with low (2%) and high (10%) cement (as soil stabilizer), were investigated using a chevron-notched semicircular bend (CN-SCB) sample under static and cyclic loads. The samples with coarser grains and higher amounts of cement stabilizer showed higher KIc compared to the soils containing low cement and fine grains. A noticeable reduction in KIc was also observed under cyclic loading compared to the monotonic loading. Load-crack opening displacement (COD) graphs obtained during cyclic loading showed high plastic deformation accumulation before the final fracture. The cycles required for the fatigue crack growth of the Class A soil were noticeably (three to six times) higher than the Class B. The FRANC2D nonlinear simulations, cohesive fracture analyses, and maximum stress theory were utilized for estimating the critical crack length and the onset of cohesive unstable crack propagation.
High levels of Co(NO3)2 for living organisms are toxic. In this study, the protective effects of 2,6-dimethyl-morpholine dithiocarbamate (DMMDTC) against the toxicity of Co(NO3)2 on Allium cepa L. were investigated. Seven groups of onion bulbs were established to investigate the potential effects of DMMDTC against Co(NO3)2 exposure in root tips. These are a control group, two groups of DMMDTC alone in different concentrations, two groups of Co(NO3)2 in different concentrations, and finally, two groups of combined DMMDTC (1,2) + Co (1,2) in different concentrations were applied to onion roots. The effects of the chemicals on physiological parameters, Mitotic Index (MI), Micro Nucleus (MN), genotoxicity and Co(NO3)2 accumulation in the roots were examined. MI analysis revealed that Co(NO3)2 treatments reduced the MI compared to water control by 52.2-46.6%, depending on the concentration. The combinations of DMMDTC + Co(NO3)2 significantly increased MI while decreasing MN compared to the cobalt-only treatments. However the protective effect of DMMDTC against cobalt toxicity was limited when the data compared to the water control. The heavy damage to epidermis cells and nucleus was also observed in those cobalt applied groups. Co(NO3)2 accumulation in the roots, compared to water control, was also high in Co1-Co2 groups. The DMMDTC used in this study had effects similar to those of plant extracts in reducing genotoxic effects. Therefore, the research highlights the potential benefits of using synthesized DMMDTC on Allium cepa against the toxic effects of cobalt.
Undrained residual strength, s(ur), often termed remolded or postcyclic strength, is a critical input into embankment dam numerical deformation analyses. There are multiple methods available to assess s(ur) for fine-grained soils, each with advantages and disadvantages. Field tests, such as the vane shear test and the cone penetration test, can provide reliable in situ measurements of s(ur). In the laboratory, s(ur) can be estimated by measuring the shear stress mobilized at high strains in monotonic tests such as direct simple shear or triaxial shear. s(ur) is also frequently determined from postcyclic monotonic testing; however, the postcyclic stress-strain curves can be difficult to interpret because of high excess pore water pressure existing at the start of monotonic shear due to the sample being previously subjected to cyclic loading. Such analyses often have a significant amount of uncertainty. The work described here presents two new methods developed to quantify s(ur) through lab testing, namely, analysis of stress paths from postcyclic monotonic tests and iterative strain-controlled cyclic loading. This paper introduces the new approaches and presents results from testing performed on five fine-grained soils from the foundations of embankment dams. Values of s(ur) from the new approaches are compared with those from VST and monotonic and postcyclic monotonic direct simple shear testing. The paper details the new approaches and presents results and conclusions from five fine-grained soils from various sites across the western United States.
Stress-strain behavior of two different soil specimens subjected to cyclic compressive loading are studied herein, the goal being to present a simple dynamic uniaxial mem-modeling approach that aids physical insight and enables system identification. In this paper, mem stands for memory, i.e., hysteresis. Mem-models are hysteresis models transferred from electrical engineering using physical analogies. Connected in series, a mem-dashpot and mem-spring are employed to model inter-cycle strain ratcheting and intra-cycle gradual densification of the two soil specimens. Measured time histories of stress and strain are first decomposed so that the two modeling components, mem-dashpot and mem-spring, can be identified separately. This paper focuses on the mem-dashpot, a nonlinear generalization of a linear viscous damper. A mem-spring model is also devised built on an extended Masing model. Nonlinear dynamic simulations (with inertia) employing the identified mem-dashpot and mem-spring demonstrate how well the identified mem-models reproduce the measured early-time data (first 200 cycles of loading). Choices of state variables inherited from bond graph theory, the root of mem-models, are introduced, while MATLAB time integrators (i.e., ode solvers) are used throughout this study to explore a range of contrasting damper and spring models. Stiff solver and the state event location algorithm are employed to solve the equations of motion involving piecewise-defined restoring forces (when applicable). Computational details and results are relegated to the appendices. This is the first study to use single-degree-of-freedom (SDOF) system dynamic simulations to explore the consistency of mem-models identified from real-world data.