共检索到 32

Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.

期刊论文 2025-09-01 DOI: http://dx.doi.org/10.3390/rs12244121

Study region: The Urumqi River basin located in eastern Tien Shan in Central Aisa Study focus: Glacier runoff plays a pivotal role in water resources and stabilizing streamflow in mountainous regions. To assess the characteristics of glacier ice melt runoff in sub-basins within a single basin, three sub-basins with glacier ratios varying from 4% to 46% in the Urumqi River basin are investigated. Through the simulation by HBV light model on the basis of the observed meteorological and hydrological data. The characteristics and behaviour of glacier ice melt runoff in the three sub-basins are analysed. New hydrological insights for the region: It was found that both the contribution ratios of ice melt runoff and glacier runoff increase linearly with the increasing glacier ratio for the three catchments, rather than logarithmically or exponentially as observed in previous studies. This is due to the relatively high contributions of ice melt and glacier runoff to river flow in a catchment characterized by high elevation and extensive glacier coverage (Catchment 1), resulting from the coincidence of summer precipitation maxima with snow and ice melt in this region. The coefficient of variations (CV) of river flow tends to decrease with the decreasing glacier ratio in subbasins in the Urumqi River basin, indicating that river flow becomes more stable as it flows farther from the headwater in the Urumqi River basin. The lowest glacierized Catchment 3 exhibited the minimum CV value, demonstrating a stable outflow.

期刊论文 2024-07-01 DOI: http://dx.doi.org/10.1016/j.ejrh.2024.101772

Improving our understanding of streamwater age knowledge is critical for revealing the complex hydrological processes in alpine cryosphere catchments. However, few studies on water age have been conducted in alpine cryosphere catchments due to the complicated and inclement environment. In this study, the Buqu catchment, a typical alpine catchment covered by glaciers and permafrost on the central Tibetan Plateau (TP), was selected as the study area. Using the sine-wave ap-proach anda gamma model based on the seasonal cycle of stable isotopes in water, the young water fraction (Fyw) and mean transit time (MTT) of the Buqu catchment outlet and 23 sub-catchments was estimated to comprehensively reveal the potential driving mechanism of water age variability. The streamwater MTT for the entire catchment was 107 days, and 15.1 % of the streamwater was younger than 41 days on average. The estimated water age showed significant spatial heterogeneity with shorter water ages in high-elevation and glacier catchments and longer water ages in low-elevation and non-glacier catchments. Precipitation was the primary driver for spatial variations in water age, while the thickness of the permafrost active layer may function as an intermediate hub to drive water age variability. Mechanically, the thick-ness of the permafrost active layer controls the water ages by modifying the flow direction and length of water flow path. Spatially, this control mechanism is indirectly driven by the elevation gradient. The TDS concentration in streamwater is significantly related to water age, thus revealing a close link between water quality and hydrology. Our findings suggest that cryosphere retreats likely alter water age, thereby slowing water circulation rates and affecting water quality security under global warming. This study provides insights into the evolution of water ages, thereby deepening our understanding of the hydrological processes and guiding the protection of water resources in alpine headwater catchments.

期刊论文 2024-07-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2022.161337 ISSN: 0048-9697

Patchiness acts as an indicator of terrestrial ecosystem degradation and can lead to considerable loss of soil organic carbon and total nitrogen. However, quantitative assessments of the effects of patchiness on soil organic carbon and total nitrogen stocks and their associated mechanisms remain limited. This study aimed to explore the influence mechanisms of patchiness on soil organic carbon and total nitrogen stocks and to project the quantitative contribution of the further expansion of patchiness and vegetation recovery. Soil properties, soil organic carbon and total nitrogen stocks were investigated using a combination of field sampling and aerial photography in four grassland types, alpine meadow, alpine steppe, temperate grassland, and desert grassland, at 47 sites in northwestern China. Soil organic carbon and total nitrogen densities in the bare patches were 34 - 54 % and 23 - 41 % lower, respectively, compared to the original vegetation. At the plot-scale, current soil organic carbon and total nitrogen stocks ranged from 30.85 to 77.80 T/ha and 3.26 to 10.19 T/ha, respectively, across grassland types; with a 10 - 27 % and 7 - 24 % potential loss of soil organic carbon and total nitrogen stocks, respectively, from the further expansion of patchiness but a 10 - 50 % and 9 - 37 % potential increase in soil organic carbon and total nitrogen stocks, respectively, from vegetation recovery. Soil organic carbon and total nitrogen stocks were positively correlated with vegetation biomass, soil clay content, and precipitation (p < 0.001), whereas they were negatively correlated with patchiness (p < 0.001). In summary, patchiness reduced soil organic carbon and total nitrogen stocks by decreasing vegetation inputs and increasing erosion outputs, while vegetation recovery showed potential for increasing carbon and nitrogen stocks. Our results highlight that maintaining intact vegetation cover is critical for preserving terrestrial ecosystem carbon and nitrogen storage.

期刊论文 2024-04-01 DOI: http://dx.doi.org/10.1016/j.catena.2024.107940 ISSN: 0341-8162

Tropical cyclone (TC) Amphan is analyzed in terms of the various factors that governed the intensification process associated with it and compared with Fani. Furthermore, the TC radial characteristics and ocean productivity are examined. Notably, both TCs formed in the Bay of Bengal during the pre-monsoon seasons of 2020 and 2019, respectively. For this study, both ocean and atmospheric parameters from various sources including global analyses, satellite observations, and outputs from Model for Prediction Across Scales-Atmosphere (MPAS-A) and Advanced Research Weather Research and Forecasting (WRF-ARW), are considered. The results indicate a gradual decrease in vertical wind shear during Fani. In the case of Amphan, the increase in mid-tropospheric relative humidity values is found to be substantial. The sea surface cooling after the passage of Amphan was higher than in the case of Fani. The higher sea surface temperature in the Amphan case corresponds to the lower aerosol loading (partly because of lockdown measures) than that of Fani in the pre-cyclone phase. And the decrease (increase) in aerosol loading coincides with an increase (decrease) in the direct radiative forcing at the ocean surface. The Madden-Julian Oscillation played a greater role in the cyclogenesis of Fani, but Kelvin waves offered a major support in the case of Amphan. The warmer sea surface, higher tropical cyclone heat potential, and conducive ocean and atmospheric setting together supported the further intensification of Amphan to the supercyclone stage. The difference in chlorophyll concentration showed a significant variation, with higher positive values seen in the case of Amphan implicating greater vertical mixing. The numerical modeling effort indicated superior performance of MPAS-A compared to WRF-ARW in simulating the radial parameters of the TCs.

期刊论文 2024-04-01 DOI: 10.1002/qj.4682 ISSN: 0035-9009

Freeze-thaw desertification (FTD) as a specific land degeneration form in high elevations is intensifying in alpine meadows due to climate change and human activities. It causes the formation of desertified patches (DPs), and further aggravating alpine meadow patchiness and impairing ecosystem functions such as water conservation, carbon sequestration and biodiversity maintenance. However, the impacts of FTD on the patch pattern, soil properties, and vegetation succession of alpine meadows and the elevation differences of these impacts still lack a comprehensive understanding. Here, we analyzed the patch patterns, soil and vegetation characteristics in typical FTD regions in the Qilian Mountains using aerial photography and field investigations along an elevation gradient. Our results indicated that, as elevation increases, the fragmentation of alpine meadows caused by FTD intensified, which was related to the elevational differentiation of freeze-thaw cycles and soil water holding capacity. DPs not only led to a decrease in soil water holding capacity and an increase in bulk density, but also caused surface soil sandification. Among them, the weakening of soil water holding capacity by DPs was particularly serious in high elevations. Additionally, the degradation of the original vegetation species com-munities in DPs caused the significant loss of vegetation cover, biomass and soil organic carbon, and made DPs exhibit certain alpine desert steppe characteristics, whereas the vegetation diversity of DPs had an increase at low elevations. Our findings highlight the significant impacts of FTD on the water conservation function and vegetation diversity of alpine meadows, and it is necessary to apply ecological protection measures to control DPs expansion such as fenced grazing, biological control and land cover (crop, vegetation, degradable plastic mulch, etc.).

期刊论文 2023-11-01 DOI: 10.1016/j.catena.2023.107471 ISSN: 0341-8162

There is an increased awareness that the biogeochemical cycling at high latitudes will be affected by a changing climate. However, because biogeochemical studies most often focus on a limited number of elements (i.e., C, P and N) we lack baseline conditions for many elements. In this work, we present a 42-element mass-balance budget for lake dominated catchment in West Greenland. By combining site specific concentration data from various catchment compartments (precipitation, active layer soils, groundwater, permafrost, lake water, lake sediments and biota) with catchment geometries and hydrological fluxes from a distributed hydrological model we have assessed present-day mobilization, transport and accumulation of a whole suite of elements with different biogeochemical behavior. Our study shows that, under the cold and dry conditions that prevails close to the inland ice-sheet: i) eolian processes are important for the transport of elements associated with mineral particles (e.g., Al, Ti, Si), and that these elements tend to accumulate in the lake sediment, ii) that even if weathering rates are slowed down by the dry and cold climate, weathering in terrestrial soils is an important source for many elements (e.g., lanthanides), iii) that the cold and dry conditions results in an accumulation of elements supplied by wet deposition (e.g., halogens) in both terrestrial soils and the lake-water column, and iv) that lead and sulfur from legacy pollution are currently being released from the terrestrial system. All these processes are affected by the climate, and we can therefore expect that the cycling of the majority of the 42 studied elements will change in the future. However, it is not always possible to predict the direction of this change, which shows that more multi-element biogeochemical studies are needed to increase our understanding of the consequences of a changing climate for the Arctic environment.

期刊论文 2023-10-01 DOI: 10.1016/j.catena.2023.107311 ISSN: 0341-8162

Glacial landforms formed by multiple glaciations are well-preserved in the valleys around Karlik Mountain in the easternmost Tianshan range, Central Asia. These landforms are direct imprints of palaeoglaciers and represent important archives of past climatic and environmental conditions. Dating these landforms contributes to understanding the spatiotemporal variations of past glaciers and provides key information for reconstructing the palaeoclimate and palaeoenvironment in Central Asia. In this study, thirty-two boulder and bedrock samples were collected from two glaciated valleys on the southern slope of Karlik Mountain for terrestrial in situ cosmogenic nuclides (TCN)10Be surface exposure dating. Based on the geomorphic relationships and dating results, the innermost MS1 moraine complex was deposited during the Little Ice Age (LIA); the MS2 moraine complex was formed during the Late -glacial; the MS3 moraine complex was deposited during the global Last Glacial Maximum (LGMG); the MS4 moraine complex, which is the largest moraine complex, is marine oxygen isotope stage (MIS) 4 in ages; and the MS5 moraine complex, which is only preserved at the interfluve ridges, has a similar age to MS4. The age of MS4 demonstrates that the largest local last glacial maximum (LGML) occurred during the early part of the last glacial cycle rather than during the LGMG. The MS4 and MS5 glacial complexes imply that a large ice cap with outlet valley glaciers developed on the whole of Karlik Mountain during MIS 4. These ages, combined with previous landform mapping and dating on the northern slope of the mountain, show that glacial advances since MIS 4 in this mountainous area were restricted to the valleys, rather than large ice cap scale, which is consistent with moraine records in the other valleys across the Tianshan range. The pattern and nearly synchronous timing of palaeoglacier fluctuations during the last glaciation in arid Central Asia imply that the main determinant for glacier fluctuations in this region has been changes in precipitation brought by the westerlies during periods of low temperature.(c) 2023 Elsevier Ltd. All rights reserved.

期刊论文 2023-09-01 DOI: http://dx.doi.org/10.1016/j.quascirev.2023.108038 ISSN: 0277-3791

Impacts of increased winter snowfall and warmer summer air temperatures on nitrous oxide (N2O) dynamics in arctic tundra are uncertain. Here we evaluate surface N2O dynamics in both wet and dry tundra in West Greenland, subjected to field manipulations with deepened winter snow and summer warming. The potential denitrification activity (PDA) and potential net N2O production (N2Onet) were measured to assess denitrification and N2O consumption potential. The surface N2O fluxes averaged 0.49 +/- 0.42 and 2.6 +/- 0.84 mu g N2O-N m- 2 h-1, and total emissions were 212 +/- 151 and 114 +/- 63 g N2O-N scaled to the entire study area of 0.15 km2, at the dry and wet tundra, respectively. The experimental summer warming, and in combination with deepened snow, significantly increased N2O emissions at the dry tundra, but not at the wet tundra. The deepened snow increased winter soil temperatures and growing season soil N availability (DON, NH4+-N or NO3- -N), but no main effect of deepened snow on N2O fluxes was found at either tundra ecosystem. The mean PDA was 5- and 121-fold higher than the N2Onet at the dry and wet tundra, respectively, suggesting that N2O might be reduced and emitted as dinitrogen (N2). Overall, this study reveals modest but evident surface N2O fluxes from tundra ecosystems in Western Greenland, and suggests that projected increases in winter precipitation and summer air temperatures may increase N2O emissions, particularly at the dry tundra dominating in this region.

期刊论文 2023-05-01 DOI: 10.1016/j.soilbio.2023.109013 ISSN: 0038-0717

Improving our understanding of streamwater age knowledge is critical for revealing the complex hydrological processes in alpine cryosphere catchments. However, few studies on water age have been conducted in alpine cryosphere catchments due to the complicated and inclement environment. In this study, the Buqu catchment, a typical alpine catchment covered by glaciers and permafrost on the central Tibetan Plateau (TP), was selected as the study area. Using the sine-wave ap-proach anda gamma model based on the seasonal cycle of stable isotopes in water, the young water fraction (Fyw) and mean transit time (MTT) of the Buqu catchment outlet and 23 sub-catchments was estimated to comprehensively reveal the potential driving mechanism of water age variability. The streamwater MTT for the entire catchment was 107 days, and 15.1 % of the streamwater was younger than 41 days on average. The estimated water age showed significant spatial heterogeneity with shorter water ages in high-elevation and glacier catchments and longer water ages in low-elevation and non-glacier catchments. Precipitation was the primary driver for spatial variations in water age, while the thickness of the permafrost active layer may function as an intermediate hub to drive water age variability. Mechanically, the thick-ness of the permafrost active layer controls the water ages by modifying the flow direction and length of water flow path. Spatially, this control mechanism is indirectly driven by the elevation gradient. The TDS concentration in streamwater is significantly related to water age, thus revealing a close link between water quality and hydrology. Our findings suggest that cryosphere retreats likely alter water age, thereby slowing water circulation rates and affecting water quality security under global warming. This study provides insights into the evolution of water ages, thereby deepening our understanding of the hydrological processes and guiding the protection of water resources in alpine headwater catchments.

期刊论文 2023-03-25 DOI: 10.1016/j.scitotenv.2022.161337 ISSN: 0048-9697
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共32条,4页