共检索到 2

To investigate the coupled time effects of root reinforcement and wet-dry deterioration in herbaceous plant-loess composites, as well as their microscopic mechanisms, this study focused on alfalfa root-loess composites at different growth stages cultivated under controlled conditions. The research included measuring root morphological parameters, conducting wet-dry cycling tests, and performing triaxial compression tests and microscopic analyses (CT scanning and nuclear magnetic resonance) on both bare loess and root-loess composites under various wet-dry cycling conditions. By obtaining shear strength parameters and microstructural indices, the study analyzed the temporal evolution of the shear strength and microstructural characteristics of root-loess composites under wet-dry cycling. The findings indicated that the alfalfa root-loess composite effective cohesion was significantly higher than that of the plain soil in the same growth stage. The alfalfa root-loess composite effective cohesion increased during the growth stage in the same dry-wet cycles. The alfalfa root-loess composite effective cohesion in the same growth stage was negatively correlated with the number of dry-wet cycles. The fatigue damage of the soil's microstructure (pore coarsening, cement hydrolysis, and crack development) increased continuously with the number of dry-wet cycles. However, due to the difference in mechanical properties between roots and the soil, the root-soil composite prevented the deterioration of the soil matrix strength by the dry-wet cycles. As the herbaceous plants grow, the time effect observed in the shear strength of the root-soil composite under the action of dry-wet cycles is the result of the interaction and dynamic coordination between the soil-stabilizing function of the herbaceous plant roots and the deterioration caused by drywet cycles.

期刊论文 2025-11-01 DOI: 10.1016/j.still.2025.106684 ISSN: 0167-1987

The issue of geotechnical hazards induced by excavation in soft soil areas has become increasingly prominent. However, the retaining structure and surface settlement deformation induced by the creep of soft soil and spatial effect of the excavation sequence are not fully considered where only elastic-plastic deformation is used in design. To understand the spatiotemporal effects of excavation-induced deformation in soft soil pits, a case study was performed with the Huaxi Park Station of the Suzhou Metro Line S1, Jiangsu Province, China, as an example. Field monitoring was conducted, and a three-dimensional numerical model was developed, taking into account the creep characteristics of mucky clay and spatiotemporal response of retaining structures induced by excavations. The spatiotemporal effects in retaining structures and ground settlement during excavation processes were analyzed. The results show that as the excavation depth increased, the horizontal displacement of the diaphragm walls increased linearly and tended to exhibit abrupt changes when approaching the bottom of the pit. The maximum horizontal displacement of the wall at the west end well was close to 70 mm, and the maximum displacement of the wall at the standard reached approximately 80 mm. The ground settlement on both pit sides showed a trough distribution pattern, peaking at about 12 m from the pit edge, with a settlement rate of -1.9 mm/m per meter of excavation depth. The excavation process directly led to the lateral deformation of the diaphragm walls, resulting in ground settlement, which prominently reflected the time-dependent deformation characteristics of mucky soft soil during the excavation process. These findings provide critical insights for similar deep excavation projects in mucky soft soil, particularly regarding excavation-induced deformations, by providing guidance on design standards and monitoring strategies for similar geological conditions.

期刊论文 2025-02-01 DOI: 10.3390/app15041992
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页