Driven by human activities and global climate change, the climate on the Qinghai-Xizang Plateau is experiencing a warming and humidifying trend. It significantly impacts the thermal-moisture dynamics in the active layer of the permafrost, which in turn affects the ecological environment of cold regions and the stability of cold region engineering. While the effect of air temperature on permafrost thaw has been well quantified, the processes and mechanisms behind the thermal-moisture response of the permafrost under the combined influence of increased rainfall and rising air temperature remain contentious and largely unknown. A coupled model was applied to quantify the impacts of increased rainfall, rising air temperature, and their compound effects on the thermal-moisture dynamics in the active layer, considering the sensible heat of rainwater in the ground surface energy balance and water balance process. The results indicate that the compound effect of warming and humidifying resulted in a significant increase in surface net radiation and evaporation latent heat, a more significant decrease in surface sensible heat, and a smaller impact of rainfall sensible heat, leading to an increase in surface soil heat flux. The compound effect of warming and humidifying leads to a significant increase in the liquid water flux with temperature gradient. The increase in liquid water flux due to the temperature gradient is larger than that of warming alone but smaller than the effect of humidifying alone. Warming and humidifying result in a smaller increase in soil moisture content during the warm season compared to rainfall increases alone. The thermal conductivity heat flux in the active layer increases significantly during the cold season but less than the effect of warming alone. The convective heat flux of liquid water flux increases noticeably during the warm season but less than the effect of rainfall increases alone. Increased rainfall significantly cools the soil during the warm season, while both warming and humidifying lead to a more pronounced warming effect on the soil during the cold season than during the warm season. An increase in the average annual temperature by 1.0 degrees C leads to a downward shift of the permafrost table by 10 cm, while an increase in rainfall by 100 mm causes an upward shift of the permafrost table by 8 cm. The combined effect of warming and humidifying results in a downward shift of the permafrost table by 6 cm. Under the influence of climate warming and humidifying, the cooling effect of increased rainfall on permafrost is relatively small, and the warming effect of increased temperature still dominates.
2024-07-10 Web of ScienceThe amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient; water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions, disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times (212 mm) and increases by 1.5 times (477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil; however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil.
2023-02-01 Web of ScienceIn the past several decades, the trend of rainfall have been significantly increasing in the Qinghai-Tibet Plateau, which inevitably leads to a change in the surface energy balance processes and thermal-moisture status of the permafrost active layers. However, the influence of mechanisms and associated effects of increasing rainfall on active layers are still poorly understood. Therefore, in this study, a validated coupled numerical water-vapor-heat model was applied for simulating the surface energy components, liquid and vapor water migration, and energy transfer within the permafrost active layer under the action of increasing rainfall in the case of an especially wet year. The obtained results demonstrate that the surface heat flux decreases with the increase in rainfall, and the dominant form of energy exchange between the ground and atmosphere becomes the latent heat flux, which is beneficial for the preservation of permafrost. The increasing rainfall will also cause the migration of liquid and vapor water, and the migration of liquid will be more significant. The liquid and vapor water migration caused by the increasing rainfall is also accompanied by energy transfer. With the increase in rainfall, the decrease in total soil heat flux directly leads to a cooling effect on the soil, and then the upper limit of the frozen soil rises, which alleviates the degradation of permafrost. These results provide further insights into engineering structures, regional ecological climate change, hydrology, and environmental issues in permafrost regions.
2021-11-01 Web of ScienceThe effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the Qinghai-Tibet Plateau by changing the leaf area index (LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from -16% to 9% and -100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change.
2021-06-01 Web of Science