共检索到 6

Trace elements (TEs) in water are crucial parameters for assessing water quality. However, detailed studies are limited on TEs in the hydrological system of the Tibetan plateau (TP). Here, we sampled snow, river water, and groundwater in Yulong Snow Mountain (Mt. Yulong) region, southeast TP, in 2016 and analyzed the concentrations of nine TEs (namely Al, Mn, Fe, Cr, Ni, Cu, Zn, As, and Pb). In snow, the average concentrations of Fe, Zn, and Al were >10 mu g/L, whereas other elements, including Cr, Ni, Cu, As, Hg, and Pb, exhibited average concentrations <1 mu g/L. The concentrations of Al, Mn, Fe, Zn, and As were higher in rivers than in snow. According to enrichment factors (EFs), Zn concentration in snow was highly influenced by anthropogenic activities, whereas Mn, Fe, Cr, and As were uninfluenced. River and lake/reservoir water near human settlements were affected by anthropogenic activities. However, groundwater around Mt. Yulong is not contaminated yet. The increasing EFs in Mt. Yulong snowpit are consistent with those of southern TP snowpits, suggesting that the area has been affected by anthropogenic activities both from local emissions and long-distance transport of pollutants from South Asia. A conceptual model was proposed to show TEs in the water cycle. Although water quality is good overall in Mt. Yulong region, threats to the water environment still exit due to increasing anthropogenic activities and climate warming. The accelerated ablation of cryosphere due to climate warming could be a source of TEs in rivers and groundwater, which should be paid attention to in the future. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2023-08-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.141725 ISSN: 0048-9697

South Asian pollutants can be transported and deposited via wet/dry deposition to the remote areas of the Himalayas and could pose a serious threat to the mountain ecosystems. Therefore, in order to understand the concentrations, fluxes, seasonal variation and origin of the mercury (Hg), major ions and trace elements, precipitation samples were collected during 2012-2013 from a data gap region, Jomsom, the high elevation semiarid mountain valley in the central Himalayas. The volume-weighted mean (VWM) concentrations of ions followed the order of Ca2+ > Mg2+ > Na+ > NH4+ > SO42- > Cl- > NO3- > K+. The concentration of Cd was lowest (0.07 mu g L-1) whereas that of Fe was the highest (1073.59 mu g L-1) in the precipitation samples. Wet deposition level of all the measured inorganic species was comparable to urban Lhasa but higher than those in remote alpine sites of the Tibetan Plateau (TP). This study shows that Hg and other inorganic constituents were higher in the non-monsoon season compared to monsoon due to enhanced washout of aerosols. Enrichment factor (EF), sea salt fraction, crustal and anthropogenic fractions, principal component analysis (PCA) and correlation coefficient analysis suggested that crustal dust and anthropogenic activities as the major sources of measured chemical species whereas the influence of sea-salt was minimal. In addition, local anthropogenic emissions were low suggesting that the majority of the pollutants could have been transported from the South Asian region to the high elevation mountains. Meanwhile, low precipitation and dry environment could have enhanced the concentrations of inorganic species in the arid region than other sites over the central Himalayas. This work adds new dataset of inorganic pollutants in wet precipitation and provides baseline information for an arid region environmental protection. However, there is a need for further long-term monitoring to understand the precipitation chemistry of the arid regions.

期刊论文 2022-06-01 DOI: http://dx.doi.org/10.1016/j.atmosres.2019.104691 ISSN: 0169-8095

This study reports for the first time the content of trace elements and light-absorbing particles (LAPs) in snow samples collected from a Peruvian glacier (Huaytapallana). The sampling campaign was carried out monthly from November 2015 to March 2019. The trace elements content was quantified by inductively coupled plasma mass spectrometry, while LAPs were analyzed using the light absorption heating method. The chemical composition dataset was assessed by descriptive statistics and t-test for assessing dry season and wet season differences. In addition, enrichment factor (EF) and hierarchical cluster analysis (HCA) were employed to identify possible emission sources. The snow, ice, and aerosol radiative (SNICAR) model was used to measure the effect of LAPs on snow albedo and radiative forcing (RF). Based on analysis of EF and HCA, it was shown that Al, Ti, Si, Co, Ce, Sr, Mn, Mg, Ba and Na have mainly natural sources; K, Ca, Fe, Cu, Pb and As have a mixture of natural and anthropogenic sources, and Zn has anthropogenic source. SNICAR model results indicated that LAPs reduced the snow albedo by up 4.5 % in the dry season with RF values as high as 33 W/m(2). Therefore, we conclude that the presence of these particles substantially increases melt or sublimation rates of Peruvian glaciers.

期刊论文 2022-01-01 DOI: 10.20937/RICA.54091 ISSN: 0188-4999

In order to determine the current levels, spatial distribution patterns, and potential pollution of trace elements (TEs) in the atmosphere of the Tibetan Plateau (TP), snow pit samples were collected in May 2016 from five TP glaciers: Qiyi (QY), Hariqin (HRQ), Meikuang (MK), Yuzhufeng (YZF), and Xiao-dongkemadi (XDKMD). Concentrations of 13 TEs (Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Pb, Sb, Sr, U, and Zn) in the snow were measured. The spatial distribution patterns and depth profiles of TEs from the studies sites revealed that the influence of dust on TEs was more significant on the MK and YZF glaciers than on the QY, HRQ, and XDKMD glaciers. The spatial distributions of TE EFFe values differed from their concentrations, however. The enrichment factor (EF) values and concentrations of some TEs in the YZF, QY, and XDKMD glaciers revealed that the pollution levels of these elements were significantly lower than those found in previous research. Examination based on EFs, principal component analysis, as well as the calculated non-dust contributions of TEs, revealed that dust was the principal source for most TEs in all five glaciers, while biomass burning was another potential natural source for TEs in some glaciers, such as QY. In contrast, Cd, Ba, Sr, Cu, Pb, Zn, and Sb were occasionally affected by anthropogenic sources such as road traffic emissions, fossil fuel combustion, and mining and smelting of nonferrous metals in and beyond the TP. Air mass backward trajectories revealed that potential pollutants were transported not only from local sources but also from Xinjiang Province in northwestern China, as well as South Asia, Central Asia, the Middle East, and Europe. (c) 2020 Elsevier Ltd. All rights reserved.

期刊论文 2020-08-01 DOI: http://dx.doi.org/10.1016/j.envpol.2020.114459 ISSN: 0269-7491

In the boreal and subarctic zone, the moss and peat interactions with rainwater and snowmelt water in shallow surface ponds control the delivery of dissolved organic matter (DOM) and metal to the rivers and further to the Arctic Ocean. The transformation of peat and moss leachate by common aquatic microorganisms and the effect of temperature on DOM mineralization by heterotrophs remain poorly known that does not allow predicting the response of boreal aquatic system to ongoing climate change. We used experimental approach to quantify the impact of boreal aquatic bacteria P. reactans, and two culturable bacteria extracted from a thaw lake of the permafrost zone (Bolshezemelskaya tundra, NE Europe): Iodobacter sp. and cyanobacterial associate dominated by order Chroococcales (Synechococcus sp). The interaction of these bacterial cultures with nutrient-free peat and moss leachate was performed in order to (1) quantify the impact of temperature (4, 25 and 45 A degrees C) on peat leachate processing by heterotrophs; (2) compare the effect of heterotrophic bacteria and cyanobacterial associate on moss and peat leachate chemical composition, and (3) quantify the DOC and metal concentration change during cyanobacterial growth on leachate from frozen and thawed peat horizon and moss biomass. The efficiency of peat DOM processing by two heterotrophs was not modified by temperature rise from 4 to 45 A degrees C. The DOC concentration decreased by a factor of 1.6 during 3 days of moss leachate reaction with Iodobacters sp. or cyanobacterial associate at 25 A degrees C. The SUVA(245) increased twofold suggesting an uptake of non-aromatic DOM by both microorganisms. The growth of cyanobacteria was absent on peat leachate but highly pronounced on moss leachate. This growth produced tenfold decrease in P concentration, a factor of 1.5-2.0 decrease in DOC, a factor of 4 and 100 decrease in Fe and Mn concentration, respectively. Adsorption of organic and organo-mineral colloids on bacterial cell surface was more important factor of element removal from organic leachates compared to intracellular assimilation and/or Fe oxyhydroxide precipitation. Overall, we demonstrate highly conservative behavior of peat leachate compared to moss leachate in the presence of culturable aquatic bacteria, a lack of any impact of heterotrophs on peat leachate and their weak impact on moss leachate. A very weak temperature impact on DOM processing by heterotrophs and lack of difference in the biodegradability of DOM from thawed and frozen peat horizons contradict the current paradigm that the warming of frozen OM and its leaching to inland waters will greatly affect microbial production and C cycle. Strong decrease in concentration of P, Fe and Mn in the moss leachate in the presence of cyanobacterial associate has straightforward application for understanding the development of thermokarst lakes and suggests that, in addition to P, Fe and Mn may become limiting micronutrients for phytoplankton bloom in thermokarst lakes.

期刊论文 2017-12-01 DOI: 10.1007/s10498-017-9325-7 ISSN: 1380-6165

We present concentrations of environmentally available (unfiltered acidified 2% v/v HNO3) As, Cu, Cd, Pb, V, Sr, and major ions including Ca2+, Cl-, and SO42- in a July 2005 and a March 2006 shallow snow profile from the lower Eliot Glacier, Mount Hood, Oregon, and its proglacial stream, Eliot Creek. Low enrichment factors (EF) with respect to crustal averages suggests that in fresh March 2006 snow environmentally available elements are derived primarily from lithogenic Sources. Soluble salts Occurred in lower and less variable concentrations in July 2005 snow than March 2006. Conversely, environmentally available trace elements Occurred in greater and more variable concentrations in July 2005 than March 2006 snow. Unlike major Solutes, particulate-associated trace elements are not readily eluted during the melt season. Additionally, elevated surface concentrations suggest that they are likely added throughout the year via dry deposition. In a 1-h stream sampling, ratios of dissolved (<0.45 mu m) V : Cl-, Sr : Cl-, and Cu : Cl- are enriched in the Eliot Stream with respect to their environmentally available trace element to Cl- ratios in Eliot Glacier snow, suggesting chemical weathering additions in the stream waters. Dissolved Ph : Cl- is depleted in the Eliot Stream with respect to the ratio of environmentally available Pb to Cl- in snow, corresponding to greater adsorption onto particles at greater pH values. Copyright (C) 2009 John Wiley & Sons, Ltd.

期刊论文 2009-10-15 DOI: 10.1002/hyp.7418 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页