共检索到 8

1. Phosphorous (P) is essential for mediating plant and microbial growth and thus could impact carbon (C) cycle in permafrost ecosystem. However, little is known about soil P availability and its biological acquisition strategies in permafrost environment. 2. Based on a large-scale survey along a similar to 1000 km transect, combining with shotgun metagenomics, we provided the first attempt to explore soil microbial P acquisition strategies across the Tibetan alpine permafrost region. 3. Our results showed the widespread existence of microbial functional genes associated with inorganic P solubilization, organic P mineralization and transportation, reflecting divergent microbial P acquisition strategies in permafrost regions. Moreover, the higher gene abundance related to solubilization and mineralization as well as an increased ration of metagenomic assembled genomes (MAGs) carrying these genes were detected in the active layer, while the greater abundance of low-affinity transporter gene (pit) and proportions of MAGs harbouring pit gene were observed in permafrost deposits, illustrating a stronger potential for P activation in active layer but an enhanced P transportation potential in permafrost deposits. 4. Our results highlight multiple P-related acquisition strategies and their differences among various soil layers should be considered simultaneously to improve model prediction for the responses of biogeochemical cycles in permafrost ecosystems to climate change.

期刊论文 2024-09-01 DOI: 10.1111/1365-2435.14612 ISSN: 0269-8463

The circum-Arctic region experienced serious fires in 2019 and 2020. Biomass burning is considered a primary source of black carbon (BC) aerosols. BC contributes to Arctic warming and impacts snow/ice melting. However, the impacts of biomass burning on BC in the Arctic during these recent serious fires have not been quantified in detail. In this study, based on numerical simulations using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), we calculated the contribution ratios of biomass burning to Arctic BC and revealed its transport pathways. Affected by biomass burning emissions, the near-surface BC concentrations over the terrestrial areas within the Arctic Circle were highest in summer, and declined in spring and autumn. Spatially, high-concentration levels of BC were distributed in the Russian central and eastern areas. Biomass burning accounted for 63.72% and 45.18% of the summer BC in the Arctic near-surface and middle troposphere, respectively. In the near-surface, the contributions from local Arctic sources were comparable to those from sources outside the Arctic Circle in summer. In the middle troposphere, contributions from sources outside the Arctic Circle were dominant. In summer, BC originating from biomass burning in Siberia was transported a short distance by southwesterly winds to the central Arctic near-surface, while the enhanced southwesterly winds in the middle troposphere transported BC from Siberia, Alaska and northern Canada to the central Arctic and Greenland. In spring and autumn, most BC originating from biomass burning in the near-surface of Eurasia was transported eastward by westerly winds and then transported northward over the North Pacific Ocean, and the long distance may have resulted in fewer effects on the Arctic. These results highlight the important role of biomass burning in the Arctic environment under a warming climate.

期刊论文 2023-12-01 DOI: http://dx.doi.org/10.1016/j.atmosres.2023.107069 ISSN: 0169-8095

Climate change has a detrimental impact on permafrost soil in cold regions, resulting in the thawing of permafrost and causing instability and security issues in infrastructure, as well as settlement problems in pavement engineering. To address these challenges, concrete pipe pile foundations have emerged as a viable solution for reinforcing the subgrade and mitigating settlement in isolated permafrost areas. However, the effectiveness of these foundations depends greatly on the mechanical properties of the interface between the permafrost soil and the pipe, which are strongly influenced by varying thawing conditions. While previous studies have primarily focused on the interface under frozen conditions, this paper specifically investigates the interface under thawing conditions. In this study, direct shear tests were conducted to examine the damage characteristics and shear mechanical properties of the soil-pile interface with a water content of 26% at temperatures of -3 degrees C, -2 degrees C, -1 degrees C, -0.5 degrees C, and 8 degrees C. The influence of different degrees of melting on the stress-strain characteristics of the soil-pile interface was also analyzed. The findings reveal that as the temperature increases, the shear strength of the interface decreases. The shear stress-displacement curve of the soil-pile interface in the thawing state exhibits a strain-softening trend and can be divided into three stages: the pre-peak shear stress growth stage, the post-peak shear stress steep drop stage, and the post-peak shear stress reconstruction stage. In contrast, the stress curve in the thawed state demonstrates a strain-hardening trend. The study further highlights that violent phase changes in the ice crystal structure have a significant impact on the peak freezing strength and residual freezing strength at the soil-pile interface, with these strengths decreasing as the temperature rises. Additionally, the cohesion and internal friction angle at the soil-pile interface decrease with increasing temperature. It can be concluded that the mechanical strength of the soil-pile interface, crucial for subgrade reinforcement in permafrost areas within transportation engineering, is greatly influenced by temperature-induced changes in the ice crystal structure.

期刊论文 2023-09-01 DOI: 10.3390/futuretransp3030055

Infrastructure and transportation systems on which northern communities rely are exposed to a variety of climatic hazards over a broad range of scales. Efforts to adapt these systems to the rapidly warming Arctic climate require high-quality climate projections. Here, a state-of-the-art regional climate model is used to perform simulations at 4-km resolution over the eastern and central Canadian Arctic. These include, for the first time over this region, high-resolution climate projections extending to the year 2040. Validation shows that the model adequately simulates base climate variables, as well as variables hazardous to northern engineering and transportation systems, such as degrading permafrost, extreme rainfall, and extreme wind gust. Added value is found over coarser resolution simulations. A novel approach integrating climate model output and machine learning is used for deriving fog-an important, but complex hazard. Hotspots of change to climatic hazards over the next two decades (2021-2040) are identified. These include increases to short-duration rainfall intensity extremes exceeding 50%, suggesting Super-Clausius-Clapeyron scaling. Increases to extreme wind gust pressure are projected to reach 25% over some regions, while widespread increases in active layer thickness and ground temperature are expected. Overall fog frequency is projected to increase by around 10% over most of the study region by 2040, due to increasing frequency of high humidity conditions. Given that these changes are projected to be already underway, urgent action is required to successfully adapt northern transportation and engineering systems located in regions where the magnitude of hazards is projected to increase.

期刊论文 2022-11-01 DOI: 10.1007/s00382-022-06265-6 ISSN: 0930-7575

The Qinghai-Tibet Railway (QTR) is the highest plateau artificial facility, connecting Lhasa and Golmud over Qinghai-Tibet Plateau. Climate change and anthropogenic activities are changing the condition of plateau, with potential influences on the stabilities of QTR. Synthetic aperture radar interferometry (InSAR) technique could retrieve ground millimeter scale deformation utilizing phase information from SAR images. In this study, the structure and deformation features of QTR are retrieved and analyzed using time-series interferometry with Sentinel-1A and TerraSAR-X images. The backscattering and coherence features of QTR are analyzed in medium and very high-resolution SAR images. Then, the deformation results from different SAR datasets are estimated and analyzed. Experimental results show that some of the QTR sections undergo serious deformation, with the maximum deformation rate of -20 mm/year. Moreover, the detailed deformation feature in the Beiluhe has been analyzed as well as the effects of different cooling measurements underline QTR embankment. It is also found that embankment-bridge transition along QTR is prone to undergo deformation. Our study demonstrates the application potential of high-resolution InSAR in deformation monitoring of QTR.

期刊论文 2019-12-01 DOI: 10.1109/JSTARS.2019.2954104 ISSN: 1939-1404

The transportation system is one of the main sectors with significant climate impact. In the U.S. it is the second main emitter of carbon dioxide. Its impact in terms of emission of carbon dioxide is well recognized. But a number of aerosol species have a non-negligible impact. The radiative forcing due to these species needs to be quantified. A radiative transfer code is used. Remote sensing data is retrieved to characterize different regions. The radiative forcing efficiency for black carbon are 396 200 W/m(2)/AOD for the ground mode and 531 +/- 190 W/m(2)/AOD for the air transportation, under clear sky conditions. The radiative forcing due to contrail is 0.14 +/- 0.06 W/m(2) per percent coverage. Based on the forcing from the different species emitted by each mode of transportation, policies may be envisioned. These policies may affect demand and emissions of different modes of transportation. Demand and fleet models are used to quantify these interdependencies. Depending on the fuel price of each mode, mode shifts and overall demand reduction occur, and more fuel efficient vehicles are introduced in the fleet at a faster rate. With the introduction of more fuel efficient vehicles, the effect of fuel price on demand is attenuated. An increase in fuel price of 50 cents per gallon, scaled based on the radiative forcing of each mode, results in up to 5% reduction in emissions and 6% reduction in radiative forcing. With technologies, significant reduction in climate impact may be achieved. (C) 2015 Elsevier Ltd. All rights reserved.

期刊论文 2015-12-01 DOI: 10.1016/j.trd.2015.09.015 ISSN: 1361-9209

Estimation of the effect of long-range transportation of anthropogenic aerosols in India is a real challenge due to the strong influence of local sources. This study addresses this issue from the measurements of aerosol optical and physical properties during 16-31 March 2006 at Kalpakkam (12.56 degrees N and 80.12 degrees E), a remote eastern coastal station in India. Increased anthropogenic aerosols were observed due to long-range transport from Indo-Gangetic Basin (IGB) in comparison to two other sources: central Bay of Bengal (CBoB) and northern Indian Ocean (NIO) as grouped from back-trajectory analyses of air parcels. AOD is found to be maximum of about 0.32 during IGB wind regime followed by CBoB (0.27) and NIO (0.20) winds. MODIS observed AOD is found to be high all along the wind back-trajectories connected from IGB indicating IGB as a source. Black carbon (BC) during IGB wind (2.0 mu g.m(-3)) is 65% greater than that observed during NIO wind (1.2 mu g.m(-3)). As a result, single scattering albedo becomes as low as 0.89 during IGB wind while 0.92 during NIO wind. These long-range transported aerosols cause about 65% enhancement of atmospheric radiative forcing and consequently, aerosol heating rate is also increased by about 70% during IGB wind regime (0.36 K/day) compared to NIO wind regime (0.21 K/day). Being a coastal region, Kalpakkam experiences strong diurnal variation of aerosol properties due to land and sea breezes that introduce about 30% increase of atmospheric forcing during land breeze by short-range transport of BC from nearby urban region. The present study concludes that long-range transported anthropogenic aerosols over coastal region of India cause significant enhancement of regional aerosol radiative forcing and their heating effect can have significant consequences for regional climate change by altering hydrological cycle over the tropical continental area. (C) 2012 Elsevier B.V. All rights reserved.

期刊论文 2012-11-15 DOI: 10.1016/j.atmosres.2012.05.025 ISSN: 0169-8095

The on-road transportation (ORT) and power generation (PG) sectors are major contributors to carbon dioxide (CO2) emissions and a host of short-lived radiatively-active air pollutants, including tropospheric ozone and fine aerosol particles, that exert complex influences on global climate. Effective mitigation of global climate change necessitates action in these sectors for which technology change options exist or are being developed. Most assessments of possible energy change options to date have neglected non-CO2 air pollutant impacts on radiative forcing (RF). In a multi-pollutant approach, we apply a global atmospheric composition-climate model to quantify the total RF from the global and United States (U.S.) ORT and PG sectors. We assess the RF for 2 time horizons: 20- and 100-year that are relevant for understanding near-term and longer-term impacts of climate change, respectively. ORT is a key target sector to mitigate global climate change because the net non-CO2 RF is positive and acts to enhance considerably the CO2 warming impacts. We perform further sensitivity studies to assess the RF impacts of a potential major technology shift that would reduce ORT emissions by 50% with the replacement energy supplied either by a clean zero-emissions source (S1) or by the PG sector, which results in an estimated 20% penalty increase in emissions from this sector (S2). We examine cases where the technology shift is applied globally and in the U.S. only. The resultant RF relative to the present day control is negative (cooling) in all cases for both S1 and S2 scenarios, global and U.S. emissions, and 20- and 100-year time horizons. The net non-CO2 RF is always important relative to the CO2 RF and outweighs the CO2 RF response in the S2 scenario for both time horizons. Assessment of the full impacts of technology and policy strategies designed to mitigate global climate change must consider the climate effects of ozone and fine aerosol particles. (C) 2009 Elsevier Ltd. All rights reserved.

期刊论文 2009-06-01 DOI: 10.1016/j.atmosenv.2009.03.021 ISSN: 1352-2310
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页