The Black carbon (BC) and Brown carbon (BrC) concentration has been measured over Srinagar (Garhwal) in central Himalayas during October 2020 to September 2021 periods. The average BC mass was 2.59 +/- 1.96 mu g m- 3 and its absorption coefficients were abundant at shorter wavelength. BC seasonal variation exhibited a significant variability, with highest during winter (4.54 +/- 2.64 mu g m- 3) followed by pre-monsoon (2.69 +/- 2.04 mu g m- 3) and post-monsoon (1.93 +/- 0.91 mu g m- 3) while lowest was observed in the monsoon (1.05 +/- 0.54 mu g m- 3). Relatively high contribution of total spectral light absorption coefficient (Abs lambda) was observed (75.94 Mm-1) at 370 nm than longer wavelength (16.86 Mm-1) at 950 nm. The BrC contribution was higher at 370 nm (32.50 Mm-1) to the total babs (lambda), while at higher wavelengths it has extensively decreased (2.54 Mm-1 at 660 nm). Seasonally, the absorption coefficient of BC and BrC was greater in winter (83.99 and 68.37 Mm-1) while lowest in monsoon (19.38 and 9.27 Mm-1), respectively. The babs BrC/babs (t) ratio revealed higher contribution of BrC in winters. The secondary brown carbon (BrCsec) and primary brown carbon (BrCpri) contributed 43.16 % and 56.88 % towards the total BrC Abs (lambda) at 370 nm with higher in winter and lowest in monsoon, respectively. BrCsec and BrCprim has shown higher contribution in evening (18.00-20.00 h) and in morning (09.00-11.00 h) hours. The average radiative forcing (RF) of BC was 36.11 +/- 6.99 Wm-2, 2.19 +/- 1.22 Wm-2 and -33.92 +/- 5.96 Wm-2 at the atmosphere (ATM), Top of the Atmosphere (TOA), and at the Surface (SUR), respectively.
Light-absorbing carbonaceous aerosols that dominate atmospheric aerosol warming over India remain poorly characterized. Here, we delve into UV-visible-IR spectral aerosol absorption properties at nine PAN-India COALESCE network sites (Venkataraman et al., 2020, ). Absorption properties were estimated from aerosol-laden polytetrafluoroethylene filters using a well-constrained technique incorporating filter-to-particle correction factors. The measurements revealed spatiotemporal heterogeneity in spectral intrinsic and extrinsic absorption properties. Absorption analysis at near-UV wavelengths from carbonaceous aerosols at these regional sites revealed large near-ultraviolet brown carbon absorption contributions from 21% to 68%-emphasizing the need to include these particles in climate models. Further, satellite-retrieved column-integrated absorption was dominated by surface absorption, which opens possibilities of using satellite measurements to model surface-layer optical properties (limited to specific sites) at a higher spatial resolution. Both the satellite-modeled and direct in-situ absorption measurements can aid in validating and constraining climate modeling efforts that suffer from absorption underestimations and high uncertainties in radiative forcing estimates. Particulate pollution in the atmosphere scatter and absorb incoming solar energy, thus cooling or warming Earth's atmosphere. In developing countries and especially in India, one of the most polluted regions of the world, the extent to which particles can absorb solar energy and warm the atmosphere is not well understood. Here, for the first time, we measure particle absorption simultaneously at nine ground sites across India, in diverse geographical regions with different levels and types of particulate pollution. We find that organic carbon particles exert large absorption at near-ultraviolet wavelengths, which contain significant solar energy. These light absorbing organic carbon particles, called brown carbon, are emitted in large quantities from biomass burning (e.g., burning crop residue and cooking on wood-fired stoves). Comparing ground measurements of absorption with satellite-retrieved measurements that are representative of the entire atmospheric column, we find that near-surface atmospheric particles can exert significant warming. This study highlights the need to improve climate model simulations of particulate pollution's impact on the climate by incorporating spatiotemporal surface-level absorption measurements, including absorption by brown carbon particles. Measurements at nine regional PAN-India sites reveal several regions with large aerosol absorption strength Brown carbon contributes significantly (21%-68%) to near-ultraviolet absorption, indicating its importance in shortwave light absorption Strong correlations observed between satellite data and surface absorption indicate future potential in modeling surface absorption
The light absorption enhancement (E-abs) of black carbon (BC) coated with non-BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of E-abs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. E-abs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in E-abs at 520 nm, with an estimated contribution percentages of 47.5%-94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on E-abs were evaluated through comparing measured E-abs with that calculated by the Mie theory. After OH exposure of 1 x 10(10) molecules cm(-3) s, the thickening of coating materials led to an E-abs increase by 3.2% +/- 1.6%, while the chemical composition changes or photobleaching induced an E-abs decrease by 4.7% +/- 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light-absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC. Plain Language Summary Understanding how black carbon (BC) coated with non-BC materials affects light absorption is crucial for assessing its impact on the Earth's climate. However, there is limited knowledge about how this process changes when BC, particularly from biomass burning, is exposed to light. Biomass burning is a significant global source of BC. This study investigated the changes in light absorption of BC from burning corn straw as it aged in a controlled environment. We measured the light absorption of BC with and without its coating materials. Our results showed that the main cause of increased light absorption was the lensing effect of the coating materials, which was more significant than the light absorption by the coating materials themselves. We also discovered that as the coating materials thickened, BC absorbed more light. However, changes in the chemical composition of the coating materials led to a decrease in total absorption. These findings suggest that while coated BC initially has a warming effect on the climate, this effect diminished as the BC ages. The decrease is likely due to the breakdown of light-absorbing compounds in the coating materials, such as polycyclic aromatic hydrocarbons (PAHs).
High uncertainty in optical properties of black carbon (BC) involving heterogeneous chemistry has recently attracted increasing attention in the field of atmospheric climatology. To fill the gap in BC optical knowledge so as to estimate more accurate climate effects and serve the response to global warming, it is beneficial to conduct site-level studies on BC light absorption enhancement (E-abs) characteristics. Real-time surface gas and particulate pollutant observations during the summer and winter over Wuhan were utilized for the analysis of E-abs simulated by minimum R squared (MRS), considering two distinct atmospheric conditions (2015 and 2017). In general, differences in aerosol emissions led to E-abs differential behaviors. The summer average of E-abs (1.92 +/- 0.55) in 2015 was higher than the winter average (1.27 +/- 0.42), while the average (1.11 +/- 0.20) in 2017 summer was lower than that (1.67 +/- 0.69) in winter. E-abs and R-BC (representing the mass ratio of non-refractory constituents to elemental carbon) constraints suggest that E-abs increased with the increase in R-BC under the ambient condition enriched by secondary inorganic aerosol (SIA), with a maximum growth rate of 70.6% in 2015 summer. However, E-abs demonstrated a negative trend against R-BC in 2017 winter due to the more complicated mixing state. The result arose from the opposite impact of hygroscopic SIA and absorbing OC/irregular distributed coatings on amplifying the light absorbency of BC. Furthermore, sensitivity analysis revealed a robust positive correlation (R > 0.9) between aerosol chemical compositions (including sulfate, nitrate, ammonium and secondary organic carbon), which could be significantly perturbed by only a small fraction of absorbing materials or restructuring BC through gaps filling. The above findings not only deepen the understanding of BC, but also provide useful information for the scientific decision-making in government to mitigate particulate pollution and obtain more precise BC radiative forcing.
To elucidate the variations in mass concentrations of organic carbon (OC) and black carbon (BC) in PM2s and their light absorption characteristics in Lanzhou, we conducted one-year online measurements by using a newly developed total carbon analyzer (TCA08) coupled with an aethalometer (AE33) from July 2018 to July 2019. The mean OC and BC concen-trations were 6.4 +/- 4.4 and 2.0 +/- 1.3 pg/m3, respectively. Clear seasonal variations were observed for both components, with winter having the highest concentrations, followed by autumn, spring, and summer. The diurnal variations of OC and BC concentrations were sim-ilar throughout the year, with daily two peaks occurring in the morning and evening, respec-tively. A relatively low OC/BC ratio (3.3 +/- 1.2, n = 345) were observed, indicating that fossil fuel combustion was the primary source of the carbonaceous components. This is further substantiated by relatively low biomass burning contribution (fbiomass: 27.1% +/- 11.3%) to BC using aethalometer based measurement though f biomass value which increased significantly in winter (41.6% +/- 5.7%). We estimated a considerable brown carbon (BrC) contribution to the total absorption coefficient (babs) at 370 nm (yearly average of 30.8% +/- 11.1%), with a win-ter maximum of 44.2% +/- 4.1% and a summer minimum of 19.2% +/- 4.2%. Calculation of the wavelength dependence of total babs revealed an annual mean AAE370-520 value of 4.2 +/- 0.5, with slightly higher values in spring and winter. The mass absorption cross- of BrC also exhibited higher values in winter, with an annual mean of 5.4 +/- 1.9 m2middotg-1 , reflecting the impact of emissions from increased biomass burning on BrC concentrations.(c) 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
China is an important emitter of light-absorbing carbonaceous aerosols (LACs), including black carbon (BC) and brown carbon (BrC). Currently, there are large uncertainties in model-estimated direct radiative forcing (DRF) of LACs, partially due to the poor understanding of the emissions and optical properties of LACs. In this study, we estimated the DRF of LACs over China during the implementation of the Air Pollution Prevention and Control Action Plan (APPCAP) using the global chemical transport model (GEOS-Chem) coupled with the Rapid Radiative Transfer Model of GCMs (RRTMG). We updated the refractive index of BC, includedbiomass burning (BB) sources, biofuel (BF) and coal combustion (CC) sources in the residential sector as BrC emission sources and the optical properties were updated, which were not fully considered in the previous model studies. Our results showed that model could reasonably capture the spatial and temporal variations of LACs in China with the correlation coefficients between model simulated and Aerosol Robotic Network (AERONET) observed daily absorption aerosol optical depth (AAOD) of LACs at 440 nm above 0.63 and the corresponding values of the normalized mean bias within +/- 30%. The simulated annual mean LACs AAOD at 440 nm in China was 0.016 (0.021) in 2017 (2014) and BrC contributed about 20% (21%). The estimated annual mean clear-sky LACs DRF at the top of the atmosphere in China was 1.02 W m(-2) in 2017 and 1.38 W m(-2) in 2014, and the contribution of BrC was about 10% and 11%, respectively, which was dominated by the BF sources (46% in 2017 and 44% in 2014) and the BB sources (38% in 2017 and 43% in 2014), with CC sources being low (16% in 2017 and 13% in 2014). The annual mean AAOD and DRF of LACs in China decreased by 0.005 and 0.36 W m(-2) from 2014 to 2017, which were largely attributed to the reductions of anthropogenic emissions during the implementation of APPCAP. Our results would improve the understanding of the light absorption capacity and climate effects of LACs in China.
Atmospheric brown carbon (BrC), a short-lived climate forcer, absorbs solar radiation and is a substantial contributor to the warming of the Earth ' s atmosphere. BrC composition, its absorption properties, and their evolution are poorly represented in climate models, especially during atmospheric aqueous events such as fog and clouds. These aqueous events, especially fog, are quite prevalent during wintertime in Indo-Gangetic Plain (IGP) and involve several stages (e.g., activation, formation, and dissipation, etc.), resulting in a large variation of relative humidity (RH) in the atmosphere. The huge RH variability allowed us to examine the evolution of water-soluble brown carbon (WS-BrC) diurnally and as a function of aerosol liquid water content (ALWC) and RH in this study. We explored links between the evolution of WS-BrC mass absorption efficiency at 365 nm (MAE WS- BrC-365 ) and chemical characteristics, viz., low-volatility organics and water-soluble organic nitrogen (WSON) to water-soluble organic carbon (WSOC) ratio (org-N/C), in the field (at Kanpur in central IGP) for the first time worldwide. We observed that WSON formation governed enhancement in MAE WS-BrC-365 diurnally (except during the afternoon) in the IGP. During the afternoon, the WS-BrC photochemical bleaching dwarfed the absorption enhancement caused by WSON formation. Further, both MAE WS-BrC-365 and org-N/C ratio increased with a decrease in ALWC and RH in this study, signifying that evaporation of fog droplets or bulk aerosol particles accelerated the formation of nitrogen-containing organic chromophores, resulting in the enhancement of WS-BrC absorptivity. The direct radiative forcing of WS-BrC relative to that of elemental carbon (EC) was -19 % during wintertime in Kanpur, and - 40 % of this contribution was in the UV -region. These findings highlight the importance of further examining the links between the evolution of BrC absorption behavior and chemical composition in the field and incorporating it in the BrC framework of climate models to constrain the predictions.
Carbonaceous aerosols were collected in the valley city of Baoji city in Northern China in August 2022. The light absorption characteristics and influencing factors of black carbon (BC) and brown carbon (BrC) were analyzed, and their radiative forcing was estimated. The results showed that the light absorption of secondary brown carbon [AbsBrC,sec (370)] was 7.5 +/- 2.4 Mm(-1), which was 2.5 times that of primary brown carbon [AbsBrC,pri (370), 3.0 +/- 1.2 Mm(-1)]. During the study period, the absorption Angstrom exponent (AAE) of aerosol was 1.6, indicating that there was obvious secondary aerosol formation or carbonaceous aerosol aging in the valley city of Baoji. Except for secondary BrC (BrCsec), the light absorption coefficient (Abs) and mass absorption efficiency (MAE) of BC and primary BrC (BrCpri) during the persistent high temperature period (PHT) were higher than those during the normal temperature period (NT) and the precipitation period (PP), which indicated that the light absorption capacity of black carbon and primary brown carbon increased, while the light absorption capacity of secondary brown carbon decreased under persistent high temperature period. Secondary aerosols sulfide (SO42-), nitrate (NO3-) and secondary organic carbon (SOC) are important factors for promoting the light absorption enhancemen of BC and BrCpri and photobleaching of BrCsec during persistent high temperature period. The Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model showed that traffic emissions was the most important source of pollution in Baoji City. Based on this, the secondary source accelerates the aging of BC and BrC, causing changes in light absorption. During PHT, the radiative forcing of BC and BrCpri were enhanced, while the radiative forcing of BrCsec was weakened, but the positive radiative forcing generated by them may aggravate the high-temperature disaster.
Aerosol optical properties, including absorption and scattering coefficients (B-abs, and B-scat), extinction coefficient (B-ext), single scattering albedo (SSA), and so forth, are critical metrics to estimate the radiative balance of the atmosphere. However, their ground measurements are sparsely distributed in the world, where Central Asia is void in these measurements. We had been performing the measurements of AOPs and BC with a photoacoustic extinctiometer (PAX) in Jimunai, a border town of China neighboring Kazakhstan, Central Asia, from Aug 2016 to Apr 2019. This three-year study first reported statistically significant trends of B-abs, B-scat, B-ext, SSA, and derived concentrations of BC (Mann-Kendall trend test, p-value 0.05) in the Central-Asian area. B-abs and B-scat show increasing trends and SSA was decreasing determined by the greater increasing pace of B-abs than B-scat. Seasonal and diurnal variations of the AOPs were associated with climate shift and residents' commute activity, respectively. The difference in the magnitudes and trends of AOPs between the measurements and satellites' observations advise that more care should be invested when choosing remote-sensing data to represent the AOPs at a specific site. The increasing trend of derived BC concentrations is reflected in the deposition record of BC in a snowpit of the nearby Muz Taw glacier. We suppose that the dramatically increasing BC particles emitted from Jimunai are significant factors triggering the melting of the adjacent mountain glaciers. The outflow of dust from the neighboring Gurbantiinggiit Desert could occasionally invade into Jimunai and deteriorate the local air quality, as evidenced by a probable dust event captured by the PAX on Feb 15, 2018. Finally, we outlook the future perspectives of measurements in Jimunai as a long-standing station.
South and Southeast Asia (SSA) emitted black carbon (BC) exerts potential effects on glacier and snow melting and regional climate change in the Tibetan Plateau. In this study, online BC measurements were conducted for 1 year at a remote village located at the terminus of the Mingyong Glacier below the Meili Snow Mountains. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to investigate the contribution and potential effect of SSA -emitted BC. In addition, variations in the light absorption characteristics of BC and brown carbon (BrC) were examined. The results indicated that the annual mean concentration of BC was 415 +/- 372 ngm(-3) , with the highest concentration observed in April (monthly mean: 930 +/- 484 ngm(-3) ). BC exhibited a similar diurnal variation throughout the year, with two peaks observed in the morning (from 8:00 to 9:00 AM) and in the afternoon (from 4:00 to 5:00 PM), with even lower values at nighttime. At a short wavelength of 370 nm, the absorption coefficient ( b abs ) reached its maximum value, and the majority of b abs values were < 20 Mm(-1) , indicating that the atmosphere was not overloaded with BC. At the same wavelength, BrC substantially contributed to b abs , with an annual mean of 25.2 % +/- 12.8 %. SSA was the largest contributor of BC (annual mean: 51.1 %) in the study area, particularly in spring (65.6 %). However, its contributions reached 20.2 % in summer, indicating non -negligible emissions from activities in other regions. In the atmosphere, the SSA BC -induced radiative forcing (RF) over the study region was positive. While at the near surface, the RF exhibited a significant seasonal variation, with the larger RF values occurring in winter and spring. Overall, our findings highlight the importance of controlling BC emissions from SSA to protect the Tibetan Plateau against pollution -related glacier and snow cover melting.