Pine wilt disease (PWD) is a devastating forest disease that severely impacts pine trees, with widespread outbreaks leading to catastrophic damage in pine forests worldwide. Our study aims to investigate the dynamics of PWD infection on soil physicochemical properties and biological activities, as well as the interrelationships between them. Soil samples were collected from 0 to 10 cm and 10 to 20 cm depths in subtropical Pinus massoniana (Masson pine) forests with PWD infection years of 0 (non-infection), 6, 10, and 16 years. The physicochemical properties, microbial biomass, and enzymatic activities of these soil samples were measured. The results revealed that soil non-capillary porosity, clay, microbial biomass carbon and microbial biomass nitrogen decreased significantly in 6 years forests. Available potassium consistently decreased with longer invasion periods, while soil polyphenol oxidase, leucine amino peptidase, and available phosphorous peaked in 6 years forests and then declined over time. The soil physicochemical properties, biological activities all decreased as soil depth increased. Redundancy analysis and Mantel tests underscored the critical role of Total potassium, pH, Total phosphorous, and bulk density in shaping microbial activities. This study demonstrated that PWD infection significantly effect on soil physicochemical properties, microbial biomass, and enzymatic activities with the chronosequence progresses. These finding contribute to a deeper understanding of how invasive pathogens like PWD can reshape soil environments, with implications for forest conservation and restoration practices.
Urgent action is needed in the Amazon to halt deforestation, repair agricultural damage, and restore forests to revive ecosystemic functions such as carbon (C) storage and soil health. A critical and demanding challenge, especially in sandy soils, is ceasing the slash-and-burn in smallholder farming livelihoods to preserve ecosystem services of primary and secondary forests. Here, we examined (i) the recovery of secondary forests in structure, litter layer, and soil health, as well as C storage post-agricultural abandonment of extremely sandy Amazonian soils (> 89 % sand), and (ii) the extent of loss of these gains when a secondary forest is burned for agricultural reconversion. We tracked secondary forests at 2, 5, 10, and 20 years, including slash-and-burning the 20-year-old forest. Our methods included analyzing C stocks in soil, litter, and plants, forest vegetation ecological indexes, litter quality assessed through nitrogen (N), C, and lignocellulose contents, delta C-13 to indicate organic matter origin, and seven additional soil health indicators. Soil delta C-13 ranged from-27.1 to-28.8 parts per thousand across the sites, indicating a negligible influence of tropical grasses on the soil's organic matter and suggesting that pastures were not previously cultivated in these areas. Secondary forest growth accumulated 0.24 and 2.97 Mg C ha(- 1 )y(- 1 ) in litter and trees, respectively. Yet, soil C stocks did not show significant changes during 20 years of forest regeneration. Over 18 years, the forest increased the vegetation diversity fourfold and litter N by 41 %, improving forest structure and litter quality. This progress in organic matter aboveground contributed to improved soil biological activity and nutrient storage, facilitating soil health and multifunctionality regeneration as the forest aged. However, slash-and-burn resulted in a 67.6 Mg C ha(- 1 ) loss, reverting levels below those of the 2-year-old forest. Returning to agriculture also depleted soil cation exchange capacity, bulk density, and fauna activity, degrading soil's chemical, physical, and biological functions to levels comparable to or worse than those in the youngest forest. We conclude that Amazonian lands abandoned after long-term agriculture still offer potential for ecological restoration, with secondary forests capable of regenerating multiple ecosystem functions, even in sandy soils. However, a single slash-and-burn reverses 20 years of progress and degrades soil health further. Recognizing smallholder farmers' poverty and reliance on slash-and-burn, we advocate for educational and socioeconomic support to stop fires and encourage sustainable agriculture, including bioeconomy incentives and environmental compensation to sustain the perpetuation and benefits of secondary forests in the Amazon.
Drylands impacted by energy development often require costly reclamation activities to reconstruct damaged soils and vegetation, yet little is known about the effectiveness of reclamation practices in promoting recovery of soil quality due to a lack of long-term and cross -site studies. Here, we examined paired on -pad and adjacent undisturbed off -pad soil properties over a 22 -year chronosequence of 91 reclaimed oil or gas well pads across soil and climate gradients of the Colorado Plateau in the southwestern United States. Our goals were to estimate the time required for soil properties to reach undisturbed conditions, examine the multivariate nature of soil quality following reclamation, and identify environmental factors that affect reclamation outcomes. Soil samples, collected in 2020 and 2021, were analyzed for biogeochemical pools (total nitrogen, and total organic and inorganic carbon), chemical characteristics (salinity, sodicity, pH), and texture. Predicted time to recovery across all sites was 29 years for biogeochemical soil properties, 31 years for soil chemical properties, and 6 years for soil texture. Ordination of soil properties revealed differences between on- and off -pad soils, while site aridity explained variability in on -pad recovery. The predicted time to total soil recovery (distance between on- and offpad in ordination space) was 96 years, which was longer than any individual soil property. No site reached total recovery, indicating that individual soil properties alone may not fully indicate recovery in soil quality as soil recovery does not equal the sum of its parts. Site aridity was the largest predictor of reclamation outcomes, but the effects differed depending on soil type. Taken together, results suggest the recovery of soil quality - which reflects soil fertility, carbon sequestration potential, and other ecosystem functions - was influenced primarily by site setting, with soil type and aridity major mediators of on -pad carbon, salinity, and total soil recovery following reclamation.
New soils formed after glacier retreat can provide insights into the rates of soil formation in the context of accelerated warming due to climate change. Recently deglacierized terrains (since the Little Ice Age) are subject to weathering and pedogenesis, and freshly exposed sediments are prone to react readily with the environment. This study aims to determine the impact of parent material and time on soil physical and chemical properties of nine proglacial landscapes distributed in the Tropical Andes and Alps. A total of 188 soil samples were collected along chronosequences of deglacierization and from sites that differed in terms of parent material and classified following three parent material groups: (1) Granodiorite-Tonalite (GT), (2) Gneiss-Shales-Schists (GSS), and (3) Mont-Blanc Granite (MBG). We determined physical and chemical soil properties such as contents of clay, silt, sand, organic carbon, bulk density (BD), pH, extractable cation (exCa, exMg, exK), elemental composition by Xray fluorescence (Al, Si, P, S, K, Ca, Mn, Fe, Cu, Zn, As, Mo, Hg, Pb) and ICP-MS (Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn), and mineral phase (XRD diffraction analysis). Parent material-controlled particle-size distribution, SOC, pH, available P, exCa, and exMg, whereas time since deglacierization only affected SOC and P, and exMg globally. Most of the significant differences in soil properties between parent material groups occurred within the first 17 years after deglacierization, and then we observed a homogenization between sites. While the higher SOC and P contents observed within the GT Andean sites might be due to the parent material composition leading to faster initial soil formation, we identified potential As, Cu, Mo, and Mn toxicity within those soils. Our study highlights the need to investigate further proglacial soil's buffering capacity and carbon sequestration to globally inform the conservation and management of novel proglacial ecosystems.
Permafrost carbon release is potentially the largest terrestrial feedback contributing to climate change. However, the changes in carbon release caused by the abrupt thawing of permafrost and their controlling factors remain largely unknown. Here, we measured soil organic carbon (SOC), total nitrogen (TN) concentrations, and carbon dioxide (CO2) and methane (CH4) emission rates among seven permafrost collapse features over 3 years in the northern Qinghai-Tibetan Plateau (QTP). The results showed soil carbon and nitrogen loss caused by permafrost collapse ranged from - 12% to 28% and - 1% to 38%, respectively. We found there was a nonlinear relationship between soil carbon loss and permafrost collapse chronosequence. Permafrost collapse significantly reduced ecosystem respiration (Reco) and weakened carbon sinks. The net ecosystem exchange (NEE) decreased from 2.59 to - 0.21 & mu;mol CO2 m- 2 s- 1. The Reco and NEE values showed no significant changes over time after the initial permafrost collapse. In contrast, the CH4 fluxes increased over time following permafrost collapse, and the CH4 fluxes significantly increased 2 to 10 times in the exposed area compared with that in the control area. Soil temperature, moisture, and nutrient availability exerted the most controls over the carbon emission during permafrost collapse. This study provides the patterns of carbon loss and emissions in different permafrost collapse landscapes, which will provide deep insights and reliable data for future prediction of the abrupt thawing of permafrost-carbon feedback.
Glaciers retreating due to global warming create important new habitats, particularly suitable for studying ecosystem development where nitrogen is a limiting factor. Nitrogen availability mainly results from microbial decomposition and transformation processes, including nitrification. AOA and AOB perform the first and rate-limiting step of nitrification. Investigating the abundance and diversity of AOA and AOB is essential for understanding early ecosystem development. The dynamics of AOA and AOB community structure along a soil chronosequence in Tianshan No. 1 Glacier foreland were analyzed using qPCR and clone library methods. The results consistently showed low quantities of both AOA and AOB throughout the chronosequence. Initially, the copy numbers of AOB were higher than those of AOA, but they decreased in later stages. The AOB community was dominated by Nitrosospira cluster ME, while the AOA community was dominated by the soil and sediment 1. Both communities were potentially connected to supra- and subglacial microbial communities during early stages. Correlation analysis revealed a significant positive correlation between the ratios of AOA and AOB with soil ammonium and total nitrogen levels. These results suggest that variations in abundance and diversity of AOA and AOB along the chronosequences were influenced by ammonium availability during glacier retreat.
Rapid warming is a major threat for the alpine biodiversity but, at the same time, accelerated glacial retreat constitutes an opportunity for taxa and communities to escape range contraction or extinction. We explored the first steps of plant primary succession after accelerated glacial retreat under the assumption that the first few years are critical for the success of plant establishment. To this end, we examined plant succession along a very short post-glacial chronosequence in the tropical Andes of Ecuador (2-13 years after glacial retreat). We recorded the location of all plant individuals within an area of 4,200 m(2) divided into plots of 1 m(2). This sampling made it possible to measure the responses of the microenvironment, plant diversity and plants traits to time since the glacial retreat. It also made it possible to produce species-area curves and to estimate positive interactions between species. Decreases in soil temperature, soil moisture, and soil macronutrients revealed increasing abiotic stress for plants between two and 13 years after glacial retreat. This increasing stress seemingly explained the lack of positive correlation between plant diversity and time since the glacial retreat. It might explain the decreasing performance of plants at both the population (lower plant height) and the community levels (lower species richness and lower accumulation of species per area). Meanwhile, infrequent spatial associations among plants indicated a facilitation deficit and animal-dispersed plants were almost absent. Although the presence of 21 species on such a small sampled area seven years after glacial retreat could look like a colonization success in the first place, the increasing abiotic stress may partly erase this success, reducing species richness to 13 species after 13 years and increasing the frequency of patches without vegetation. This fine-grain distribution study sheds new light on nature's responses to the effects of climate change in cold biomes, suggesting that faster glacial retreat would not necessarily result in accelerated plant colonization. Results are exploratory and require site replications for generalization.
Warming of the arctic landscape results in permafrost thaw, which causes ground subsidence or thermokarst. Thermokarst formation on hillslopes leads to the formation of thermal erosion features that dramatically alter soil properties and likely affect soil carbon emissions, but such features have received little study in this regard. In order to assess the magnitude and persistence of altered emissions, we use a space-for-time substitution (thaw slump chronosequence) to quantify and compare peak growing season soil carbon dioxide (CO2) fluxes from undisturbed tundra, active, and stabilized thermal erosion features over two seasons. Measurements of soil temperature and moisture, soil organic matter, and bulk density are used to evaluate the factors controlling soil CO2 emissions from each of the three chronosequence stages. Soil CO2 efflux from the active slump is consistently less than half that observed in the undisturbed tundra or stabilized slump (1.8 versus 5.2 g CO2-C m(-2) d(-1) in 2011; 0.9 versus 3.2 g CO2-C m(-2) d(-1) in 2012), despite soil temperatures on the floor of the active slump that are 10-15 degrees C warmer than the tundra and stabilized slump. Environmental factors such as soil temperature and moisture do not exert a strong control on CO2 efflux, rather, local soil physical and chemical properties such as soil organic matter and bulk density, are strongly and inversely related among these chronosequence stages (r(2) = 0.97), and explain similar to 50% of the variation in soil CO2 efflux. Thus, despite profound soil warming and rapid exposure of buried carbon in the active slump, the low organic matter content, lack of stable vegetation, and large increases in the bulk densities in the uppermost portion of active slump soils (up to similar to 2.2 g(-1) cm(-3)) appear to limit CO2 efflux from the active slump. Future studies should assess seasonal fluxes across these features and determine whether soil CO2 fluxes from active features with high organic content are similarly low.
We assessed patterns in soil development at a recently deglaciated foreland on Anvers Island on the Antarctic Peninsula. Soil samples were collected along transects extending 35 m over bare ground from the edge of a receding glacier; the far end of these transects has been ice free for approximately 20 years. We also compared soils at the far end of these transects under bare ground to those under canopies of isolated individuals of Deschampsia antarctica, a caespitose grass, that had recently colonized the site (established for < 6 years). In addition, we compared soils at this young foreland to those in a well-developed tundra island that has been ice free for at least several hundred years. At the foreland site, soil moisture was greatest near the glacier, consistent with proximity to meltwater, and declined with distance from the glacier. This decline in soil moisture may explain the decrease in litter decomposition rates and the greater soil nitrate (NO3 (-)) concentrations that we observed with distance from the glacier. The greater soil moisture near the glacier likely promoted leaching and transport of NO3 (-) to drier soils away from the glacier. The presence of D. antarctica at the glacier foreland had little effect on soil properties, which is not surprising considering it had only colonized sampling areas during the previous 5 years. Compared to the foreland, which contained only mineral soil, soil at the older tundra site had a 2.5- to 5-cm-thick organic horizon that had much higher concentrations of total carbon, nitrogen, and NO3 (-).