共检索到 6

New soils formed after glacier retreat can provide insights into the rates of soil formation in the context of accelerated warming due to climate change. Recently deglacierized terrains (since the Little Ice Age) are subject to weathering and pedogenesis, and freshly exposed sediments are prone to react readily with the environment. This study aims to determine the impact of parent material and time on soil physical and chemical properties of nine proglacial landscapes distributed in the Tropical Andes and Alps. A total of 188 soil samples were collected along chronosequences of deglacierization and from sites that differed in terms of parent material and classified following three parent material groups: (1) Granodiorite-Tonalite (GT), (2) Gneiss-Shales-Schists (GSS), and (3) Mont-Blanc Granite (MBG). We determined physical and chemical soil properties such as contents of clay, silt, sand, organic carbon, bulk density (BD), pH, extractable cation (exCa, exMg, exK), elemental composition by Xray fluorescence (Al, Si, P, S, K, Ca, Mn, Fe, Cu, Zn, As, Mo, Hg, Pb) and ICP-MS (Al, Ca, Cu, Fe, K, Mg, Mn, Mo, Na, P, S, Zn), and mineral phase (XRD diffraction analysis). Parent material-controlled particle-size distribution, SOC, pH, available P, exCa, and exMg, whereas time since deglacierization only affected SOC and P, and exMg globally. Most of the significant differences in soil properties between parent material groups occurred within the first 17 years after deglacierization, and then we observed a homogenization between sites. While the higher SOC and P contents observed within the GT Andean sites might be due to the parent material composition leading to faster initial soil formation, we identified potential As, Cu, Mo, and Mn toxicity within those soils. Our study highlights the need to investigate further proglacial soil's buffering capacity and carbon sequestration to globally inform the conservation and management of novel proglacial ecosystems.

期刊论文 2024-03-30 DOI: 10.1016/j.catena.2023.107748 ISSN: 0341-8162

Permafrost carbon release is potentially the largest terrestrial feedback contributing to climate change. However, the changes in carbon release caused by the abrupt thawing of permafrost and their controlling factors remain largely unknown. Here, we measured soil organic carbon (SOC), total nitrogen (TN) concentrations, and carbon dioxide (CO2) and methane (CH4) emission rates among seven permafrost collapse features over 3 years in the northern Qinghai-Tibetan Plateau (QTP). The results showed soil carbon and nitrogen loss caused by permafrost collapse ranged from - 12% to 28% and - 1% to 38%, respectively. We found there was a nonlinear relationship between soil carbon loss and permafrost collapse chronosequence. Permafrost collapse significantly reduced ecosystem respiration (Reco) and weakened carbon sinks. The net ecosystem exchange (NEE) decreased from 2.59 to - 0.21 & mu;mol CO2 m- 2 s- 1. The Reco and NEE values showed no significant changes over time after the initial permafrost collapse. In contrast, the CH4 fluxes increased over time following permafrost collapse, and the CH4 fluxes significantly increased 2 to 10 times in the exposed area compared with that in the control area. Soil temperature, moisture, and nutrient availability exerted the most controls over the carbon emission during permafrost collapse. This study provides the patterns of carbon loss and emissions in different permafrost collapse landscapes, which will provide deep insights and reliable data for future prediction of the abrupt thawing of permafrost-carbon feedback.

期刊论文 2023-10-01 DOI: 10.1016/j.catena.2023.107291 ISSN: 0341-8162

Glaciers retreating due to global warming create important new habitats, particularly suitable for studying ecosystem development where nitrogen is a limiting factor. Nitrogen availability mainly results from microbial decomposition and transformation processes, including nitrification. AOA and AOB perform the first and rate-limiting step of nitrification. Investigating the abundance and diversity of AOA and AOB is essential for understanding early ecosystem development. The dynamics of AOA and AOB community structure along a soil chronosequence in Tianshan No. 1 Glacier foreland were analyzed using qPCR and clone library methods. The results consistently showed low quantities of both AOA and AOB throughout the chronosequence. Initially, the copy numbers of AOB were higher than those of AOA, but they decreased in later stages. The AOB community was dominated by Nitrosospira cluster ME, while the AOA community was dominated by the soil and sediment 1. Both communities were potentially connected to supra- and subglacial microbial communities during early stages. Correlation analysis revealed a significant positive correlation between the ratios of AOA and AOB with soil ammonium and total nitrogen levels. These results suggest that variations in abundance and diversity of AOA and AOB along the chronosequences were influenced by ammonium availability during glacier retreat.

期刊论文 2022-12-01 DOI: http://dx.doi.org/10.3390/microorganisms11122871

Rapid warming is a major threat for the alpine biodiversity but, at the same time, accelerated glacial retreat constitutes an opportunity for taxa and communities to escape range contraction or extinction. We explored the first steps of plant primary succession after accelerated glacial retreat under the assumption that the first few years are critical for the success of plant establishment. To this end, we examined plant succession along a very short post-glacial chronosequence in the tropical Andes of Ecuador (2-13 years after glacial retreat). We recorded the location of all plant individuals within an area of 4,200 m(2) divided into plots of 1 m(2). This sampling made it possible to measure the responses of the microenvironment, plant diversity and plants traits to time since the glacial retreat. It also made it possible to produce species-area curves and to estimate positive interactions between species. Decreases in soil temperature, soil moisture, and soil macronutrients revealed increasing abiotic stress for plants between two and 13 years after glacial retreat. This increasing stress seemingly explained the lack of positive correlation between plant diversity and time since the glacial retreat. It might explain the decreasing performance of plants at both the population (lower plant height) and the community levels (lower species richness and lower accumulation of species per area). Meanwhile, infrequent spatial associations among plants indicated a facilitation deficit and animal-dispersed plants were almost absent. Although the presence of 21 species on such a small sampled area seven years after glacial retreat could look like a colonization success in the first place, the increasing abiotic stress may partly erase this success, reducing species richness to 13 species after 13 years and increasing the frequency of patches without vegetation. This fine-grain distribution study sheds new light on nature's responses to the effects of climate change in cold biomes, suggesting that faster glacial retreat would not necessarily result in accelerated plant colonization. Results are exploratory and require site replications for generalization.

期刊论文 2021-02-02 DOI: 10.3389/fevo.2021.584872 ISSN: 2296-701X

Warming of the arctic landscape results in permafrost thaw, which causes ground subsidence or thermokarst. Thermokarst formation on hillslopes leads to the formation of thermal erosion features that dramatically alter soil properties and likely affect soil carbon emissions, but such features have received little study in this regard. In order to assess the magnitude and persistence of altered emissions, we use a space-for-time substitution (thaw slump chronosequence) to quantify and compare peak growing season soil carbon dioxide (CO2) fluxes from undisturbed tundra, active, and stabilized thermal erosion features over two seasons. Measurements of soil temperature and moisture, soil organic matter, and bulk density are used to evaluate the factors controlling soil CO2 emissions from each of the three chronosequence stages. Soil CO2 efflux from the active slump is consistently less than half that observed in the undisturbed tundra or stabilized slump (1.8 versus 5.2 g CO2-C m(-2) d(-1) in 2011; 0.9 versus 3.2 g CO2-C m(-2) d(-1) in 2012), despite soil temperatures on the floor of the active slump that are 10-15 degrees C warmer than the tundra and stabilized slump. Environmental factors such as soil temperature and moisture do not exert a strong control on CO2 efflux, rather, local soil physical and chemical properties such as soil organic matter and bulk density, are strongly and inversely related among these chronosequence stages (r(2) = 0.97), and explain similar to 50% of the variation in soil CO2 efflux. Thus, despite profound soil warming and rapid exposure of buried carbon in the active slump, the low organic matter content, lack of stable vegetation, and large increases in the bulk densities in the uppermost portion of active slump soils (up to similar to 2.2 g(-1) cm(-3)) appear to limit CO2 efflux from the active slump. Future studies should assess seasonal fluxes across these features and determine whether soil CO2 fluxes from active features with high organic content are similarly low.

期刊论文 2014-02-01 DOI: 10.1088/1748-9326/9/2/025001 ISSN: 1748-9326

We assessed patterns in soil development at a recently deglaciated foreland on Anvers Island on the Antarctic Peninsula. Soil samples were collected along transects extending 35 m over bare ground from the edge of a receding glacier; the far end of these transects has been ice free for approximately 20 years. We also compared soils at the far end of these transects under bare ground to those under canopies of isolated individuals of Deschampsia antarctica, a caespitose grass, that had recently colonized the site (established for < 6 years). In addition, we compared soils at this young foreland to those in a well-developed tundra island that has been ice free for at least several hundred years. At the foreland site, soil moisture was greatest near the glacier, consistent with proximity to meltwater, and declined with distance from the glacier. This decline in soil moisture may explain the decrease in litter decomposition rates and the greater soil nitrate (NO3 (-)) concentrations that we observed with distance from the glacier. The greater soil moisture near the glacier likely promoted leaching and transport of NO3 (-) to drier soils away from the glacier. The presence of D. antarctica at the glacier foreland had little effect on soil properties, which is not surprising considering it had only colonized sampling areas during the previous 5 years. Compared to the foreland, which contained only mineral soil, soil at the older tundra site had a 2.5- to 5-cm-thick organic horizon that had much higher concentrations of total carbon, nitrogen, and NO3 (-).

期刊论文 2009-12-01 DOI: 10.1007/s00300-009-0677-3 ISSN: 0722-4060
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页