Aerosol single-scattering albedo (SSA) is the most critical factor for the accurately calculating of aerosol radiative effects, however, the observation of vertical profiles of SSA is difficult to realize. Current assessments of aerosol radiative effects remain uncertain because of the lack of long-term, high-resolution vertical profiles of SSA observations. High-resolution SSA vertical profiles were observed in a semi-arid region of Northwest China during winter using a tethered balloon. The observed SSA vertical profiles were used to calculate the aerosol direct radiative forcing and radiative heating rates. Significant differences in the calculated radiative forcing were found (e.g., a 48.3% relative difference for the heating effect in the atmosphere at 14:00) between the observed SSA profiles and the constant assumption with SSA = 0.90. Diurnal variations in the vertical distribution of SSA decisively influenced direct radiative forcing of aerosols. Furthermore, high-resolution vertical profiles of absorbing aerosols and meteorological parameters provide robust observational evidence of the heating effect of an elevated absorbing aerosol layer. This study provides a more accurate calculation of aerosol radiative forcing using observed aerosol SSA profiles. The scarcity of single-scattering albedo (SSA) observations is the most critical factor limiting the accurate calculations of aerosol radiative effects. A tethered balloon platform was used to obtain long-term, high-resolution observations of the SSA and estimate aerosols' radiative effects. The relative differences in the heating rate and direct radiative forcing calculations using the observed SSA and a constant assumed SSA (i.e., ignoring the vertical distribution of absorbing aerosols) were quantified. The effects of diurnal variations in the vertical distribution of SSA on aerosol direct radiative forcing are summarized. This study has important scientific implications for assessing the radiative effects of aerosols in semi-arid regions, that are highly sensitive to climate change. Tethered balloon observations acquired high-resolution vertical aerosol single-scattering albedo (SSA) profiles The assumed SSA profiles caused a 48.3% relative error in radiative forcing in the atmosphere compared to the observed profiles at 14:00 A robust observational evidence of atmospheric heating by absorbing aerosols above the boundary layer was provided
Knowledge of aerosol radiative effects in the Tibetan Plateau (TP) is limited due to the lack of reliable aerosol optical properties, especially the single scattering albedo (SSA). We firstly reported in situ measurement of SSA in Lhasa using a cavity enhanced albedometer (CEA) at lambda = 532 nm from 22nd May to 11th June 2021. Unexpected strong aerosol absorbing ability was observed with an average SSA of 0.69. Based on spectral absorptions measured by Aethalometer (AE33), black carbon (BC) was found to be the dominated absorbing species, accounting for about 83% at lambda = 370 nm, followed by primary and secondary brown carbon (BrCpri and BrCsec). The average direct aerosol radiative forcing at the top of atmosphere (DARFTOA) was 2.83 W/m2, indicating aerosol warming effect on the Earth-atmosphere system. Even though aerosol loading is low, aerosol heating effect plays a significant role on TP warming due to strong absorbing ability. The Tibetan Plateau (TP) has experienced rapid warming over the past decades, but the key factors affecting TP climate change haven't yet been clearly understood. Aerosol single scattering albedo (SSA) is a key optical parameter determining aerosol warming or cooling effect; however, reliable SSA measurement is scarce in TP. This study firstly reported in situ measurement of SSA in Lhasa and explored the direct radiative effect of aerosol on TP warming. Strong aerosol absorption, mainly contributed by black carbon (BC), was observed with an average SSA value of 0.69 in this city. Besides Lhasa, other sites over TP were also reported with low SSA (<= 0.77) from surface measurement. The strong aerosol absorption could cause heating effect on the Earth-atmosphere system. To relieve TP warming, reasonable pollutant emission control strategies should be taken urgently to weaken aerosol absorbing ability. Unexpected low aerosol single scattering albedo was observed in Lhasa via in situ measurement of multiple optical parameters simultaneously Black carbon was the dominant contributor (similar to 83%) to aerosol absorption at 370 nm, followed by primary and secondary brown carbon The strong absorption in Lhasa exerted positive direct aerosol radiative forcing (warming effect) at the top of atmosphere
The study examines the thermodynamic structure of the marine atmospheric boundary layer (MABL) and its effect on the aerosol dynamics in the Indian Ocean sector of Southern Ocean (ISSO) between 30 degrees S-67 degrees S and 57 degrees E-77 degrees E. It includes observations of aerosols and meteorology collected during the Xth Southern Ocean Expedition conducted in December 2017. The results revealed the effect of frontal-region-specific air-sea coupling on the thermodynamic structure of MABL and its role in regulating aerosols in ISSO. The MABL over the subtropical front was unstable and formed a well-evolved mixed layer ( 2400 m) capped by low-level inversions ( 660 m). Convective activities in the Sub-Antarctic Frontal region were associated with the Agulhas Retroflection Current, which supported the forma-tion of a well-developed mixed layer ( 1860 m). The mean estimates of aerosol optical depth (AOD) and black carbon (BC) mass concentrations were 0.095 +/- 0.006 and 50 +/- 14 ng m-3, respectively, and the resultant clear sky direct shortwave radiative forcing (DARF) and atmospheric heating rate (HR) were 1.32 +/- 0.11 W m-2 and 0.022 +/- 0.002 K day-1, respectively. In the polar front (PF) region, frequent mid-latitude cyclones led to highly stabilized MABL, supported low-level multi-layered clouds (>3-layers) and multiple high-level inversions (strength > 0.5 K m-1 > 3000 m). The clouds were mixed-phased with temperatures less than -12 degrees C at 3000 m altitude. Interestingly, there was higher loading of dust and BC aerosols (276 +/- 24 ng m-3), maximum AOD (0.109 +/- 0.009), clear sky DARF (1.73 +/- 0.02 W m-2), and HR (0.029 +/- 0.005 K day-1). This showed an accumulation of long-range advected anthro-pogenic aerosols within baroclinic-boundaries formed over the PF region. Specifically, in the region south of PF, weak convection caused weakly-unstable MABL with a single low-level inversion followed by no clouds/single-layer clouds. Predominant clean maritime air holding a small fraction of dust and BC accounted for lower estimates of AOD (0.071 +/- 0.004), BC concentrations (90 +/- 55 ng m-3) and associated clear sky DARF and HR were 1.16 +/- 0.06 W m-2 and 0.019 +/- 0.001 K day-1, respectively.
Aerosol behavior over the Himalayas plays an important role in the regional climate of South Asia. Previous studies at highaltitude observatories have provided evidence of the impact of long-range transport of pollutants from the Indo-Gangetic Plain (IGP). However, little information exists for the valley areas in the high Himalayas where significant local anthropogenic emissions can act as additional sources of short-living climate forcers and pollutants. The valley areas host most economic activities based on agriculture, forestry, and pilgrimage during every summer season. We report here first measurements at a valley site at similar to 2600 m a.s.l. on the trek to the Gangotri glacier (Gaumukh), in the Western Himalayas, where local infrastructures for atmospheric measurements are absent. The study comprised short-term measurement of aerosols, chemical characterization, and estimation of aerosol radiative forcing (ARF) during the winter and summer periods (2015-2016). The particulate matter mass concentrations were observed to be higher than the permissible limit during the summer campaigns. We obtained clear evidence of the impact of local anthropogenic sources: particulate nitrate is associated with coarse aerosol particles, the black carbon (BC) mass fraction appears undiluted with respect tomeasurements performed in the lower Himalayas, and inwinter, both BC and sulfate concentrations in the valley site are well above the background levels reported from literature studies for mountain peaks. Finally, high concentrations of trace metals such as copper point to anthropogenic activities, including combustion and agriculture. While most studies in the Himalayas have addressed pollution in the high Himalayas in terms of transport from IGP, our study provides clear evidence that local sources cannot be overlooked over the high-altitude Himalayas. The estimated direct clear-sky ARF was estimated to be in the range of -0.1 to +1.6Wm(-2), with significant heating in the atmosphere over the highaltitude Himalayan study site. These results indicate the need to establish systematic aerosol monitoring activities in the high Himalayan valleys.
The temporal variations (diurnal and seasonal) of the optical properties and direct aerosol radiative forcing (DARF) of different aerosol components (water-soluble, insoluble, black carbon (BC), and sea-salt) were analyzed using the hourly resolution data (PM2.5\) measured at an urban site in Seoul, Korea during 2010, based on a modeling approach. In general, the water-soluble component was predominant over all other components (with a higher concentration) in terms of its impact on the optical properties (except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD, tau) at 500 nm for the water-soluble component was 0.38 +/- 0.07 (0.06 +/- 0.01 for BC). The forcing at the surface (DARF(SFC)) and top of the atmosphere (DARF(TOA)), and in the atmosphere (DARF(ATM)) for most aerosol components (except for BC) during the daytime were highest in spring and lowest in late fall or early winter. The maximum DARF(SFC) occurred in the morning during most seasons (except for the water-soluble components showing peaks in the afternoon or noon in summer, fall, or winter), while the maximum DARF(TOA) occurred in the morning during spring and/or winter and in the afternoon during summer and/or fall. The estimated DARF(SFC) and DARF(ATM) of the water-soluble component were in the range of -49 to -84 W m(-2) and +10 to +22 W m(-2), respectively. The DARF(SFC) and DARF(ATM) of BC were -26 to -39 W m(-2) and +32 to +51 W m(-2), respectively, showing highest in summer and lowest in spring, with morning peaks regardless of the season. This positive DARF(ATM) of BC in this study area accounted for approximately 64% of the total atmospheric aerosol forcing due to strong radiative absorption, thus increasing atmospheric heating by 2.9 +/- 12 K day(-1) (heating rate efficiency of 39 K day(-1) tau(-1)) and then causing further atmospheric warming. (C) 2017 Elsevier B.V. All rights reserved.
The optical properties and direct aerosol radiative forcing (DARF) of different aerosol components in PM2.5 (water-soluble, insoluble, black carbon (BC), and sea-salt) were estimated using the hourly resolution data measured at Aewol intensive air monitoring site on Jeju Island during 2013, based on a modeling approach. In general, the water-soluble component was predominant over all other components with respect to its impact on the optical properties (except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD) at 500 nm for the water-soluble component was 0.14 +/- 0.14 (0.04 +/- 0.01 for BC). The total DARF at the surface (DARF(SFC)) and top of the atmosphere (DARF(TOA)), and in the atmosphere (DARF(ATM)) for most aerosol components (except for sea-salt) during the daytime were highest in spring and lowest in fall and/or summer. The maximum DARF(SFC) of most aerosol components occurred around noon (12:00 similar to 14:00 LST) during all seasons, while the maximum DARF(TOA) occurred in the afternoon (13:00 similar to 16:00 LST) during most seasons (except for spring). In addition, the estimated DARF(SFC) and DARF(ATM) of the water-soluble component were -20 to -59 W/m(2) and +3.5 to +14 W/m(2), respectively, while those of BC were -18 to -29 W/m(2) and +23 to +37 W/m(2), respectively.
[1] New aerosol modules of global ( circulation and chemical transport) models are evaluated. These new modules distinguish among at least five aerosol components: sulfate, organic carbon, black carbon, sea salt, and dust. Monthly and regionally averaged predictions for aerosol mass and aerosol optical depth are compared. Differences among models are significant for all aerosol types. The largest differences were found near expected source regions of biomass burning ( carbon) and dust. Assumptions for the permitted water uptake also contribute to optical depth differences ( of sulfate, organic carbon, and sea salt) at higher latitudes. The decline of mass or optical depth away from recognized sources reveals strong differences in aerosol transport or removal among models. These differences are also a function of altitude, as transport biases of dust do not always extend to other aerosol types. Ratios of optical depth and mass demonstrate large differences in the mass extinction efficiency, even for hydrophobic aerosol. This suggests that efforts of good mass simulations could be wasted or that conversions are misused to cover for poor mass simulations. In an attempt to provide an absolute measure for model skill, simulated total optical depths ( when adding contributions from all five aerosol types) are compared to measurements from ground and space. Comparisons to the Aerosol Robotic Network (AERONET) suggest a source strength underestimate in many models, most frequently for ( subtropical) tropical biomass or dust. Comparisons to the combined best of Moderate-Resolution Imaging Spectroradiometer ( MODIS) and Total Ozone Mapping Spectrometer ( TOMS) indicate that away from sources, model simulations are usually smaller. Particularly large are discrepancies over tropical oceans and oceans of the Southern Hemisphere, raising issues on the treatment of sea salt in models. Totals for mass or optical depth in many models are defined by the absence or dominance of only one aerosol component. With appropriate corrections to that component ( e. g., to removal, to source strength, or to seasonality) a much better model performance can be expected. Still, many important modeling issues remain inconclusive as the combined result of poor coordination ( different emissions and meteorology), insufficient model output ( vertical distributions, water uptake by aerosol type), and unresolved measurement issues ( retrieval assumptions and temporal or spatial sampling biases).