共检索到 27

Permafrost melting due to climate warming in recent decades has produced significant effects on forest ecosystems, especially the boreal biome at its southernmost limit in Asia. How this warming affects wood formation of trees at intra-annual resolution is unclear, yet is crucial for assessing the impact of permafrost melting on boreal forest growth. In this study, we compared the radial growth and intra-annual wood density fluctuations (IADFs) of Dahurian larch ( Larix gmelinii Rupr.) at a permafrost (PF) and a non -permafrost (NPF) site at the southernmost permafrost limit in northeast China and quantified their relationships with climate factors. Drought in early summer was the main factor limiting growth of Dahurian larch. The basal area increment (BAI) of trees at both sites increased initially and then decreased in the 1980s, probably in response to warm -dry climate conditions. Earlywood IADFs (IADF-E) occurred in 14.0% and 9.3% of dated rings at the NPF and PF sites, while the frequency of latewood IADFs (IADF-L) was 6.8% and 2.7% at these two sites. The frequency of IADF-E in trees at both sites was positively and negatively related to June temperatures (and vapor pressure deficit) and precipitation, respectively, suggesting drought stress in June triggered the formation of IADF-E. The IADF-Ls were probably formed in response to warm temperatures in the late growing season. A higher BAI and a lower frequency of IADF-Es of trees at the PF site than at the NPF site indicated that permafrost melting could alleviate drought stress in early summer and promote radial growth of Dahurian larch. This greatly improved forest carbon sequestration and wood quality of some northeastern Asian boreal forests may offset to some extent the adverse effects of warming -drying climates at some sites of northeast Asia. Larch IADF-Es recorded extreme droughts in early summer, giving us a new sight for reconstructing high -frequency extreme climate events. If climate warming continues, the benefits of permafrost melting will gradually disappear and even turn negative due to warmer -dryer climate conditions. Our findings provide valuable information for boreal forest management and conservation under future global warming.

期刊论文 2024-07-01 DOI: 10.1016/j.ecolind.2024.112158 ISSN: 1470-160X

Under the influence of global change, precipitation amounts and extreme precipitation frequency during nongrowing seasons in mid -high latitude grasslands have been increasing. However, the ecological effects of nongrowing season precipitation in the desert steppe have long been overlooked due to an insufficient understanding of the correlative mechanisms linking non -growing season precipitation to plant growth. Therefore, a 3year non -growing season precipitation manipulation experiment was conducted to reveal the response of desert steppe plants to non -growing season precipitation changes. Our study indicates that, by influencing water budget and availability, non -growing season precipitation directly or indirectly impacted community structure, plant biomass allocation, and water -carbon utilization intensity. Adaptive strategies of communities and plants included: Dominant species enhanced their dominance in the community to adapt to non -growing season precipitation changes. Stipa krylovii exhibited different biomass allocation strategies in response to nongrowing season precipitation variations. Plants in the precipitation shading plots tended to allocate biomass to the roots, while those in the precipitation increase plots favored aboveground development. Persistent drought during the growing season intensified early insufficient development of plants in the precipitation shading plots. Upon entering the wet period, plants in the precipitation shading plots shifted into a compensatory growth mode with high water -carbon activity intensity, while those in the precipitation increase plots entered a moderate growth mode with relatively low water -carbon activity intensity. Additionally, our study found that the regulatory effects of non -growing season precipitation were more pronounced in the growing seasons with less precipitation in the early to middle stage. Moreover, increased non -growing season precipitation enhanced plant water use efficiency (WUE) and strengthened their resilience to drought conditions. Our study suggests that the ecological role of non -growing season precipitation may be further highlighted in the future climate change pattern. Given the worldwide increase in frequency of extreme precipitation events, particular vigilance should be paid to the underlying long-term adverse effects of severe droughts during the non -growing season. Our findings provide new insights and valuable experimental observational evidence for the climate change impact assessment and response in xerophytic grassland ecosystems.

期刊论文 2024-05-01 DOI: 10.1016/j.jhydrol.2024.131112 ISSN: 0022-1694

In the early 21st century, Southwest China (SWC) frequently experienced extreme droughts and severe haze pollution events. Although the meteorological causes of these extreme droughts have been widely investigated, previous studies have yet to understand the causes of haze pollution events over SWC. Moreover, the associations between winter atmospheric teleconnections during drought and haze pollution event across SWC has received negligible attention and therefore warrants investigation. This study examines the associations between the atmospheric teleconnections with respect to winter droughts and winter haze pollution over SWC. Our main conclusions are as follows. (1) Winter precipitation and winter haze days (WHD) over SWC had three major fluctuations from 1959 to 2016. (2) The atmospheric circulation pattern over the Eurasian (EU) continent associated with WHD over SWC resembled that of winter droughts over SWC, where both can be characterized by an EU teleconnection pattern. The Arctic Oscillation (AO) mainly induced the atmospheric circulation pattern over the EU continent that is associated with WHD over SWC. (3) The sea surface temperature (SST) and low circulation anomalies in the Pacific and north Atlantic associated with WHD were similar to those associated with winter droughts over SWC. La Nina events and negative phases of the North Atlantic Oscillation (NAO) may induce winter drought and increase the WHD over SWC. (4) Compared with winter drought over SWC, the variation in the WHD was more complex and the factors affecting WHD were more diverse, and winter drought and its related atmospheric circulations were important factors that induced haze pollution over SWC. Overall, this study not only fills a gap in the literature with respect to the associations between the atmospheric teleconnections of winter drought and winter haze pollution over SWC, but also provides an important scientific basis for the development of potential predictions of local monthly haze pollution, which improves the forecast accuracy of local short-term haze pollution and enriches the theoretical understanding of the meteorological causes of local haze pollution. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2024-04-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.142599 ISSN: 0048-9697

The growth resilience of forests to extreme drought event has become an urgent topic in global change ecology because of exacerbated water constraints upon trees' growth over the last few decades. Yet, surprisingly little is empirically known about the contribution of stand age, a key factor influencing forest structure and ecological processes, to variation in growth resilience among stands. This study revealed discrepancies in the drought resilience of forests of different stand ages by analyzing an extensive tree-ring dataset from Qinghai spruce (Picea crassifolia Kom.), a typical moisture-sensitive tree species in northwestern China. We found that older growth Qinghai spruce forest stands have higher resistance to droughts than do younger growth ones. Conversely, however, the post-drought recoveries of these older growth forest stands are lower than those of the younger growth stands. Patterns in the variation of resilience indices were consistent between two contrasting hydrological niche regions, whereas the stand age-related discrepancies in drought resilience became significantly smaller going from the wetter region to the drier region. These findings imply that, instead of a one-size-fits-all strategy, more meticulous and more targeted strategies are needed to enhance forest management and strengthen forest conservation given the experienced and projected climate trends, which feature increasing precipitation but higher extreme-drought frequency across this spruce tree's habitat and distribution in northwestern China.

期刊论文 2024-02-01 DOI: http://dx.doi.org/10.1016/j.foreco.2022.120135 ISSN: 0378-1127

Background and Aims Seed persistence in soil depends on environmental factors that affect seed dormancy and germination, such as temperature and water availability. In high-elevation ecosystems, rapid changes in these environmental factors because of climate change can impact future plant recruitment. To date, our knowledge on how soil seed banks from high-elevation environments will respond to climate change and extreme climate-related events is limited. Here, using the seedling emergence method, we investigated the effects of reduced snow cover, fire and drought on the density and diversity of germinants from soil seed banks of two high-elevation plant communities: a tall alpine herbfield and a treeline ecotone.Methods In Autumn 2020, we collected soil samples and characterized the standing vegetation of both communities at Kosciuszko National Park, Australia. Subsequently, we carried out a factorial experiment and subjected the soil samples to a series of manipulative treatments using greenhouse studies.Key Results The treeline had a larger and more diverse soil seed bank than the herbfield. A reduction in snow had a negative effect on the number of germinants in the herbfield and increased the dissimilarity with the standing vegetation, whereas the treeline responses were mainly neutral. Fire did not significantly affect the number of germinants but decreased the evenness values in both communities. The drought treatment reduced the number and richness of germinants and increased the dissimilarity with the standing vegetation in both communities. Plant functional forms explained some of the detected effects, but seed functional traits did not.Conclusions Our study suggests that simulated climate change will affect plant recruitment from soil seed banks in a variety of ways. Changes in snow cover and incidences of fire and drought might be key drivers of germination from the soil seed bank and therefore the future composition of alpine plant communities.

期刊论文 2023-12-14 DOI: 10.1093/aob/mcad184 ISSN: 0305-7364

In 2015 the beginning of the Indian Smart Cities' mission was one of the significant steps taken by the Indian government to make the urban environment resilient to climate change impact and extreme weather events like drought, floods, heatwaves, etc. This study computes the urban drought risk for Indian smart cities before the beginning of the Indian smart cities mission. This study considers three decadal variability (1982-2013) in meteorological, hydrological, vegetation, and soil moisture parameters for inducing water scarcity and drought conditions in urban regions. Hazards associated with urban drought-inducing parameters variability, vulnerability, and exposure of Indian smart cities were used to compute the Urban drought risk. The research investigations revealed the maximum urban drought risk for Bangalore, Chennai, and Surat cities. Northwest, West Central, and South Peninsular urban regions have higher risk among all the urban regions of India. Indian smart cities mission can be used to make Indian cities resilient to urban drought risk and increase their sustainability. The present research aligned with several national and international agreements by providing an urban drought risk rank for Indian cities, making them less vulnerable to extreme weather events and improving their resilience to climate change.

期刊论文 2023-10-01 DOI: 10.1016/j.jhydrol.2023.130056 ISSN: 0022-1694

Understanding the impact of management upon post-drought tree growth recovery and drought legacy effects is among the fundamental challenges hindering the improvement of forest conservation strategies in the face of increasingly frequent, longer, and intensified extreme droughts under ongoing climate change. Yet surprisingly little is known to date about how management practices can influence drought legacy effects; and previous studies of management impacts on forest resilience to drought have reached inconsistent and contentious conclusions. This study sought to tackle these pressing questions and gain insight by analyzing tree-ring datasets from non-managed and managed Qinghai spruce forests in northwestern China. The results show improved growth resilience to drought of those trees under management practices. Moreover, Qinghai spruce radial growth in non-managed forest exhibited significant legacy effects of extreme drought, whereas such legacy effects were mitigated in managed forest. Nevertheless, both the resilience augmentation and the mitigation of drought legacy effects by management were much weaker in the face of a three-year persistent drought than a single-year event. Hence, we may conclude that current management practices are advantageous and necessary for forest conservation under exacerbated drought conditions, for which strategies and measures should be better thought out and tailored to specific situations, rather than being one-size-fits-all, to better serve the goals of forest managers and conservationists.

期刊论文 2023-09-15 DOI: http://dx.doi.org/10.1016/j.foreco.2023.121196 ISSN: 0378-1127

Study region: This study focuses on the upper reaches of Shule river (URSLH) and Heihe river (URHH) basins and Taolai river (URTLH) basin in Qilian Mountains.Study focus: The impact of the cryosphere changes on runoff components in basins with different cryosphere ratios.New hydrological insights for the region: Total runoff (TR) increased in URSLH and URHH and decreased in URTLH, snowmelt runoff (SR) decreased in each basin, glacier runoff (GR) increased in URSLH and URTLH but decreased in URHH during 1980-2015. In the future, GR will increase under SSP585 and slightly decrease under SSP126 in 2040-2060 in URSLH and decrease in URHH and URSLH. The peak time of SR will advance by a month in each basin. In the future, GR (The ratio of the coefficient of variation (cv) of TR to cv of non-glacial runoff) will decrease, indicating hydrological regulation of glaciers will be weakened in these basins. SR and Rs (The ratio of summer runoff to spring runoff) will show downward trends, the processes of TR increase will be smoother. Rr (The ratio of maximum to minimum monthly runoff) will show downward trends under SSPs. TR will become smoother in each basin. Furthermore, the change of each runoff components will make TR tends to be smoother in the future and reduce TR especially in summer.

期刊论文 2023-06-04 DOI: http://dx.doi.org/10.1016/j.ejrh.2023.101401

Drought is a major natural disaster worldwide. Understanding the correlation between meteorological drought (MD) and agricultural drought (AD) is essential for relevant policymaking. In this paper, standardized precipi-tation evapotranspiration index and standardized soil moisture index were used to estimate the MD and AD in the North China Plain (NCP) to identify the correlation between MD and AD during the growth period of winter wheat. In addition, we investigated the contributions of climate change (CC) and human activity (HA) to AD and the factors influencing the loss of winter wheat net primary production (NPP). Drought propagation time (PT) increased spatially from the southern to northern NCP (from 3 to 11 months). PT first increased and then decreased during the phenological period of winter wheat, and the decreasing trend was delayed with an increasing latitude. In general, the relative contribution of CC to AD was higher than that of HA; the correlation between MD and AD exhibited a weakening trend, particularly during the middle and late phenological stages of winter wheat. Precipitation was the main driver of the effects of HA on AD; the effects were stronger in areas with less precipitation. However, because of the improved irrigation conditions and scarce rainfall during the growth period of winter wheat in the study area, the effects of precipitation on AD were nonsignificant. Instead, tem-perature, wind, and total solar radiation, which are highly correlated with evapotranspiration, were identified as the primary drivers of AD; spatiotemporal variations were noted in these correlations. Prolonged drought PT reduced NPP; the sensitivity of winter wheat NPP to AD was higher in humid areas than in semiarid or semi-humid areas. NPP loss occurred primarily due to HA. Our findings revealed a correlation between MD and AD in agroecosystems and may facilitate policymaking related to drought mitigation and food security.

期刊论文 2023-05-01 DOI: 10.1016/j.jhydrol.2023.129504 ISSN: 0022-1694

The Tarim River, the largest inland river in China, sits in the Tarim River Basin (TRB), which is an arid area with the ecosystem primarily sustained by water from melting snow and glaciers in the headstream area. To evaluate the pressures of natural disasters in this climate-change-sensitive basin, this study projected flash droughts in the headstream area of the TRB. We used the variable infiltration capacity (VIC) model to describe the hydrological processes of the study area, Markov chain Monte Carlo to quantify the parameter uncertainty of the VIC model. Ten downscaled general circulation models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to drive the VIC model, and the standardized evaporative stress ratio was applied to identify flash droughts. The results demonstrated that the VIC model after Bayesian parameters uncertainty analysis can efficiently describe the hydrological processes of the study area. In the future (2021-2100), compared with the plain region, the alpine region has higher flash drought frequency and intensity. Compared with the historical period (1961-2014), the frequency, duration, and intensity of flash droughts tend to increase throughout the study area, especially for the alpine area. Moreover, based on variance decomposition, CMIP6 model is the most important uncertainty source for flash drought projection, followed by the shared socioeconomic pathway of climate change scenario and VIC model parameters.

期刊论文 2023-03-27 DOI: 10.1029/2022JD037634 ISSN: 2169-897X
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共27条,3页