共检索到 3

The Ore Mountains were historically one of the most polluted areas in Europe, where high sulphur dioxide concentrations and a high level of atmospheric deposition led to a vast decline in Norway spruce stands in the mountain ridge plateau. In this article, we evaluate the trends in the atmospheric deposition load, soil chemistry, tree nutrition, crown defoliation and height increment in a network of twenty research plots monitored for last thirty years in this region. The decrease in sulphur and nitrogen deposition was most pronounced at the end of 1990s. Extreme values of sulphur deposition (100-200 kg.ha-1.year-1) were recorded in throughfall under mature Norway spruce stands in the late 1970s, and after felling of the damaged stand, the deposition levels were comparable to open plot bulk deposition. Nitrogen deposition decreased more slowly compared with sulphur, and a decrease in base cation deposition was observed concurrently. The current deposition load is low and fully comparable to other mountain areas in central Europe. Accordingly, the health of young spruce stands, as assessed by defoliation and height increment, has improved and now corresponds to the Czech national average. On the other hand, no significant changes were observed in the soil chemistry, even though some of the plots were limed. Acidic or strongly acidic soil prevails, often with a deficiency of exchangeable calcium and magnesium in the mineral topsoil, as well as decreases in available phosphorus. This is reflected in the foliage chemistry, where we see an imbalance between a relatively high content of nitrogen and decreasing contents of phosphorus, potassium and calcium. Despite the observed positive trends in air quality and forest health, the nutritional imbalance on acidified soils poses a risk for the future of forest stands in the region.

期刊论文 2024-09-01 DOI: 10.3390/plants13172379 ISSN: 2223-7747

The impact of climate change has become increasingly severe in forests, where droughts and strong winds on the one hand and extreme rainfall events on the other hand can damage forest ecosystems. To mitigate the effects of drought and enhance soil water retention capacity, three types of soil conditioners (SCs), labeled SC_R, SC_CG, and SC_ZZC, were developed as part of the European project ONEforest. All the conditioners are based on Xanthan gum and have different types and amounts of fillers with diverse cellulose fiber lengths. These can offer the potential to optimize the SC characteristics, e.g., water absorption, water retention, and mechanical stability. This paper focuses on the influence of fillers in the SCs on the geotechnical properties of forest soils from Ljubelj in the Alpine part of Slovenia (S1), Catalonia, northeastern Spain (S2), and Heldburg, Germany (S3). The results show an increase of 53% to 100% in the water absorption of treated soil. A less favorable impact of the SCs was found on the drained shear strength and the compressibility. The drained shear strength of untreated forest soils in a saturated state was S1 c ' = 4.4 kPa, phi ' = 33.5 degrees; S2 c ' = 1.4 kPa, phi ' = 30.0 degrees; and S3 c ' = 12 kPa, phi ' = 28.0 degrees. The addition of SCs results in a reduction in the drained shear strength of saturated mixtures. The reduction depends on the dosage of added SC-whether it is a low (L) or a high (H) dosage. For instance, when the soil S1 was treated with a low dosage of the soil conditioner SC_R, it demonstrated a cohesion (c ') of 11 kPa and a friction angle (phi ') of 27.0 degrees. However, increasing the dosage of the SC_R led to a decrease in both the cohesion and the friction angle for the same soil (c ' = 7.7 kPa, phi ' = 25.0 degrees). Additionally, the type of soil conditioner also impacts the drained shear strength. Among the mixtures with a high dosage of the SC_R, SC_CG, or SC_ZZC, those containing the SC_CG with the longest fibers stand out, demonstrating the highest friction angle. Therefore, longer fibers can be a promising component of the SCs to reduce the negative influence of XG on the mechanical properties of treated soils.

期刊论文 2024-05-01 DOI: 10.3390/app14104044

Analysis of climatic conditions for the period of instrumental measurement in Central Yakutia showed three periods with two different mean annual air temperature (MAAT) shifts. These periods were divided into 1930-1987 (base period A), 1988-2006 (period B) and 2007-2018 (period C) timelines. The MAAT during these three periods amounted -10.3, -8.6 and -7.4 degrees C, respectively. Measurement of active layer depth (ALD) of permafrost pale soil under the forest (natural) and arable land (anthropogenic) were carried out during 1990-2018 period. MAAT change for this period affected an early transition of negative temperatures to positive and a later establishment of negative temperatures. Additionally, a shortening of the winter season and an extension of the duration of days with positive temperatures was found. Since the permafrost has a significant impact on soil moisture and thermal regimes, the deepening of ALD plays a negative role for studied soils. An increase in the ALD can cause thawing of underground ice and lead to degradation of the ice-rich permafrost. This thaw process causes a change of the ecological balance and leads to the destruction of natural landscapes, sometimes with a complete or prolonged loss of their biological productivity. During this observation (1990-2018 period) the active layer of permafrost is characterized by high dynamics, depending on climatic parameters such as air temperature, as well as thickness and duration of snow cover. A significant increase in ALD of forest permafrost soils-by 80 cm and 65 cm-on arable land was measured during the observation period (28 years).

期刊论文 2021-01-01 DOI: 10.3390/land10010003
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页