A cast-in-place pile foundation, widely utilized in the permafrost regions of the Qinghai-Tibet Plateau, boasts superior load-bearing capacity, effectively mitigating the seasonal freeze-thaw effects. In permafrost regions, substantial pile foundation load-bearing capacity is provided by freezing strength, with the freezing strength determined by the temperature of the surrounding permafrost. In modern times, global warming has been causing permafrost degradation, posing a risk to the safety of existing pile foundations. In order to maintain the stability of these foundations, it is crucial to release excess ground heat, considering the temperature-dependent freezing strength of the ground to pile shaft. Two-phase closed thermosyphons (TPCTs) have demonstrated strong performance in the realm of cooling permafrost engineering. In this study, TPCTs were utilized to mitigate the impact of permafrost degradation by installing them around a concrete pile in order to cool the foundation ground. Following this installation, a model experiment was carried out, which ingeniously focused on analyzing the cooling performance, the process of cold energy dissipation, and the cooling scope of the TPCT pile. The study's findings indicate that the operation time of the TPCT pile accounted for about 50% of the entire freeze-thaw cycle. This device could effectively cool the surrounding foundation soil within a specified area. The TPCT pile exhibited a low temperature advantage of 0.36 degrees C in comparison with the scenario without TPCT in terms of surrounding geotemperature, although it experienced significant cold energy dissipation. The conclusions drawn from this study have significant value for maintaining piles in permafrost regions.
By analyzing the last 50-60 years of climate changes in Arctic and Subarctic Yakutia, we have identified three distinct periods of climate development. The cold (1965-1987), pre-warming (1988-2004), and modern warming (2005-2023) periods are clearly identifiable. Yakutia's Arctic and Subarctic regions have experienced mean annual air temperature increases of 2.5 degrees C and 2.2 degrees C, respectively, compared to the cold period. The thawing index rose by an average of 171-214 degrees C-days, while the freezing index dropped by an average of 564-702 degrees C-days. During the pre-warming period, all three characteristics show a minor increase in warmth. Global warming intensified between 2005 and 2023, resulting in elevated permafrost temperatures and a deeper active layer. Monitoring data from the Tiksi site show that warming has been increasing at different depths since the mid-2000s. As a result, the permafrost temperature increased by 1.7 degrees C at a depth of 10 m and by 1.1 degrees C at a depth of 30 m. Soil temperature measurements at meteorological stations and observations at CALM sites both confirm the warming of the permafrost. A permafrost-climatic zoning study was conducted in Arctic and Subarctic Yakutia. Analysis identified seven regions characterized by similar responses to modern global warming. These study results form the foundation for future research on global warming's effects on permafrost and on how northern Yakutia's environment and economy adapt to the changing climate.
Introduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai-Tibetan Plateau, and the freezing-thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December-early February), the early ablation period (mid-February to March), and the later ablation period (March-end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process.
The warming and melting of permafrost due to climate warming pose a considerable threat to the integrity of the Pan Arctic building, thus jeopardizing sustainable development. The increase in ambient temperature in permafrost areas will cause deterioration in the bearing capacity of building pile foundations. Considering the continuous deepening of the active layer (za), the present paper used small-scale physical modeling to investigate the potential variation of bearing capacity and load transfer mechanism of pile foundations under the scenario of continuous degradation of permafrost. The ultimate bearing capacity of a single pile and the undrained shear strength of the ground under different za are estimated by cone penetration tests. In the static load test of single piles, the axial load-settlement, axial force of pile shaft, and earth pressure at the pile tip are measured. The results show that the rise in ground temperature and the deepening of the za shorten the elastic and elastic-plastic stages of the load-displacement curve, resulting in a gradual decline in the bearing capacity of a single pile. The pile-soil interface temperature is always higher than the adjacent ground temperature at the same depth. Adfreezing force of the pile-soil interface decreases due to the increase in ground temperature and water content. With the deepening of za, the peak point of the shaft resistance decreases from -30 cm to -60 cm under the ultimate state. Meanwhile, with more axial load transfer along the pile shaft to the pile tip, the share ratio of pile tip resistance to ultimate stress gradually increases. In addition, the temperature rise of frozen soil at the pile tip accelerates the settling rate of the pile, which eventually causes the pile foundation failure.
The freezing index (FI) is one of the most important indicators that shows the variation of permafrost. However, the relationship between climate change and the thermal conditions of permafrost is not understood well. This study analyzed the variation of FI based on 5-cm soil temperature derived from 74 meteorological stations from 1977 to 2016 on the Qinghai-Tibet Plateau (QTP). Furthermore, the factors affecting the FI variation and its relationship with permafrost degradation were also discussed. The results showed that FI was much smaller in the interior than other areas of the QTP, and it increased at a rate of 53.0 degrees C d/10a during the 40 years. FI in the main body of the QTP was relatively stable than surrounding areas; it was more stable in the northern part than in the southern part. On average, the FI variation coefficient was larger than 10%, indicating the large fluctuation of FI during the 40 years. FI decreased with the increasing altitude; it was more sensitive to the altitude in the south of 33 degrees N than in the north. The variation of FI was closely related to the maximum freezing depth (MFD) and the active layer thickness (ALT). It was observed that MFD decreased and ALT increased by approximately 1.4 cm and 1.6 cm, respectively, with each 10.0 degrees C d increase in FI. The results exhibited the thermal condition variation of the permafrost in QTP and revealed a degrading trend of the permafrost.
The majority of the Qinghai-Tibet Plateau (QTP) and Mongolia are underlain by permafrost. We have examined trends in air temperature and associated freezing/thawing index by using a non-parametric statistical method for the QTP and Mongolia from 1961 to 2011. The annual air temperature and associated freezing/thawing index exhibit similar patterns, suggesting similar warming trend in the two regions. The annual warming trends of air temperature are 0.33 ?/decade and 0.37 ?/decade in the QTP and Mongolia, respectively. The freezing index show significantly decreasing trends with-56.7 ?.days/decade and-57.5 ?.days/decade, while the thawing index present obvious increasing trends of 68.2 ?.days/decade and 68.3 ?.days/decade in the QTP and Mongolia, respectively. We find that the variations of air temperature and freezing/thawing index exhibit prominent spatial heterogeneity, and the warming trends is attributed to different seasonal warming. The warming trends in the QTP are dominated by winter warming, it is coincide with previous studies. Contrary to the QTP, autumn warming mainly accounts for the warming trends in the Mongolia. In addition, a winter cooling trend is observed in the Mongolia during the last two decades. These findings will be helpful to better understand the spatial heterogeneity of permafrost changes.
Global warming effects in temperate and polar regions include higher average temperatures and a decrease in snow cover, which together lead to an increase in the number of freeze-thaw cycles (FTC). These changes could affect the fitness of both terrestrial and aquatic species. In this study, we tested how tardigrades, ubiquitous microscopic invertebrates, face FTC. Tardigrades are amongst the most resistant animals to unfavorable conditions, including long and deep freezing periods, and are an emerging model group for invertebrate ecology and evolution. We used 12 populations of tardigrades, representing different families within order Parachela, inhabiting different ecosystems (glaciers, snow, terrestrial, aquatic), found in various substrates (mosses, sediments in lakes, cryoconite on glaciers, and snow), and originating from different latitudes and altitudes. We estimated the number of cycles required to kill 50% of individuals and tested for its association with ecological characteristics of the natural habitat (e.g., number of months with predicted FTC), while accounting for phylogeny. The most resistant tardigrades to FTC were the ones from mountain areas and glaciers. The estimated number of cycles required to kill 50% of individuals was the highest for mountainous species inhabiting rock pools and cryoconite holes on glaciers (30 and 14 FTC, respectively). Tardigrades from lowlands were the most sensitive to changes, with 50% of individuals dying after three FTC, while lacustrine and subtropical tardigrades required only one FTC to reach 50% mortality. Our study shows that the response to recurrent freezing stress is taxon dependent and related to the local environmental conditions. The predicted increase of FTC cycles will negatively impact tardigrade populations. Considering the abundance and various trophic roles of tardigrades, reduction in population sizes or the disappearance of some fragile species could affect the functioning of both aquatic and terrestrial ecosystems. Tardigrades are candidate indicators of how freeze-thaw cycles impact ubiquitous microscopic metazoans with similar physiological capabilities.
The soil freezing and thawing process affects soil physical properties, such as heat conductivity, heat capacity, and hydraulic conductivity in frozen ground regions, and further affects the processes of soil energy, hydrology, and carbon and nitrogen cycles. In this study, the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences (CAS-ESM) and its land component, the Common Land Model (CoLM), to investigate the dynamic change of freezing and thawing fronts and their effects. Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts. The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m, and the regionally averaged trend value was 0.35 cm yr(-1). The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m, and the regionally averaged trend value was -0.48 cm yr(-1). The active layer thickness increased while the maximum freezing depth decreased year by year. These results contribute to a better understanding of the freezing and thawing cycle process.
Freezing/thawing indices are important indicators of the dynamics of frozen ground on the Qinghai-Tibet Plateau (QTP), especially in areas with limited observations. Based on the numerical outputs of Community Land Surface Model version 4.5 (CLM4.5) from 1961 to 2010, this study compared the spatial and temporal variations between air freezing/thawing indices (2 m above the ground) and ground surface freezing/thawing indices in permafrost and seasonally frozen ground (SFG) across the QTP after presenting changes in frozen ground distribution in each decade in the context of warming and wetting. The results indicate that an area of 0.60 x 10(6) km(2) of permafrost in the QTP degraded to SFG in the 1960s-2000s, and the primary shrinkage period occurred in the 2000s. The air freezing index (AFI) and ground freezing index (GFI) decreased dramatically at rates of 71.00 & DEG;C & BULL;d/decade and 34.33 & DEG;C & BULL;d/decade from 1961 to 2010, respectively. In contrast, the air thawing index (ATI) and ground thawing index (GTI) increased strikingly, with values of 48.13 & DEG;C & BULL;d/decade and 40.37 & DEG;C & BULL;d/decade in the past five decades, respectively. Permafrost showed more pronounced changes in freezing/thawing indices since the 1990s compared to SFG. The changes in thermal regimes in frozen ground showed close relations to air warming until the late 1990s, especially in 1998, when the QTP underwent the most progressive warming. However, a sharp increase in the annual precipitation from 1998 began to play a more controlling role in thermal degradation in frozen ground than the air warming in the 2000s. Meanwhile, the following vegetation expansion hiatus further promotes the thermal instability of frozen ground in this highly wet period.
The freezing index (FI) is an important index used in investigations of climate change, frozen ground degradation and frost heave resistance engineering design. In view of the fact that the deterministic effects of latitude and elevation are not considered in the frequency calculation of FI, we proposed an index-freezing method that considers the certainty effects of both elevation and latitude by referring to the index-flood method in this paper. The correlations between the FI and certainty factors (elevation and latitude) were obtained by multiple regression analysis. The effects of latitude and elevation were then removed by nondimensionalisation, and dimensionless FI sequences were subsequently obtained. Finally, the index-freezing method was verified by regional probability analysis. Using the daily average temperature data recorded at 10 major meteorological stations over the 1960-2020 period in Ningxia, the calculation process of the FI and its frequency distribution were provided. The results showed that the proposed FI method can not only remove the certainty effects of elevation and latitude but can also consider the uncertainty associated with interannual FI variations, thus providing more scientific, reasonable and accurate results. The generalised extreme value (GEV) distribution is the optimal frequency distribution of the nondimensional regional FI. The estimation errors of the missing data tests were mostly within 10%, and the residual sum of squares (RSS) and root-mean-square error (RMSE) values were also lower than those obtained through spatial interpolation, thus indicating that the interpolation preci-sion of the proposed FI method was optimal.