The Tibetan Plateau (TP) is the largest permafrost distribution zone at high-altitude in the mid-latitude region. Climate change has caused significant permafrost degradation on the TP, which has important impacts for the eco-hydrological processes. In this study, the frost number is utilized to calculate the frost number (F) based on the air freezing/thawing index obtained from the downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets. A novel method is proposed to determine the frost number threshold (Ft) for diagnosing permafrost distribution. Then the simulated permafrost distribution maps are compared with the existing permafrost distribution map, employing the Kappa coefficient as the measure of classification accuracy to identify the optimal Ft. Finally, the permafrost distribution on the TP under different Shared Socio-economic Pathways (SSP) scenarios are diagnosed with the optimal Ft. Simulation results demonstrate that across all scenarios, the rates of permafrost degradation during the mid-future period (2040-2060) remain comparable to those observed in the baseline period (2000), ranging from 33% +/- 3% to 53% +/- 4%. Conversely, during the far-future (2080-2099), the permafrost degradation rates display significant variation across different scenarios, ranging from 37% +/- 4% to 96% +/- 3%. The profound impacts of permafrost degradation on the TP are reflected in decreasing trends in soil moisture and runoff, as well as a slower increasing trend in Normalized Difference Vegetation Index (NDVI) compared to other regions, indicating negative impacts on vegetation growth. The Tibetan Plateau, the highest plateau in the world and the largest high-altitude permafrost region, is experiencing permafrost degradation due to climate change, significantly impacting eco-hydrological processes in this region. In this study, we used the frost number model with air temperature to simulate the distribution of permafrost on the Tibetan Plateau under different scenarios. The results show that permafrost on the Tibetan Plateau is projected to degrade in the 21st century, especially under high-emission scenarios. The degradation of permafrost will likely reduce soil moisture and runoff. Additionally, vegetation growth in areas with permafrost degradation is expected to be slow. These findings are of great significance for understanding permafrost changes on the Tibetan Plateau and their impacts on eco-hydrological processes. A new method using the frost number model with Kappa coefficient is proposed to diagnose permafrost distributionPermafrost on the Tibetan Plateau will experience the least degradation (33% +/- 3%) under SSP126, and the most (96% +/- 3%) under SSP585 in 2080-2099Permafrost degradation on the Tibetan Plateau is anticipated to reduce soil moisture and runoff, adversely affecting vegetation growth
Against the background of global warming, environmental and ecological problems caused by frozen ground degradation have become a focus of attention for the scientific community. As the temperature rises, the permafrost is degrading significantly in the frozen ground region of northeast China (FGRN China). At present, research on FGRN China is based mainly on data from meteorological stations, and the research period has been short. In this study, we analyzed spatial and temporal variation in the ground surface freezing index (GFI) and ground surface thawing index (GTI) from 1900 to 2017 for FGRN China, with the air freezing index (AFI) and air thawing index (ATI) using the University of Delaware (UDEL) monthly gridded air temperature dataset. The turning point year for annual mean air temperature (AMAT) was identified as 1985, and the turning point years for GFI and GTI were 1977 and 1996. The air temperature increased by 0.01 degrees C per year during 1900-2017, and the GFI and GTI increased at rates of -0.4 and 0.5 degrees C d per year before the turning point year; after the turning point, these rates were -0.7 and -2.1 degrees C d per year. We utilized a surface frost number model to study the distribution of frozen ground in FGRN China from 1900 to 2017. When the empirical coefficient E value is 0.57, the simulated frozen ground distribution is basically consistent with the existing frozen ground maps. The total area of permafrost in FGRN China decreased by 22.66x10(4) km(2) from 1900 to 2017, and the permafrost boundary moved northward with obvious degradation. The results of this study demonstrate the trend in permafrost boundary degradation in FGRN China, and provide basic data for research on the hydrological, climate, and ecological changes caused by permafrost degradation.
Dynamics of the frozen ground are key to understand the changes of eco-environment in cold regions, especially for areas with limited field observations. In this study, we analyzed the spatial and temporal variations of the ground surface freezing and thawing indices from 1900 to 2017 for the upper Brahmaputra River (also called the Yarlung Zangbo River in China) Basin (UBRB), southwestern Tibetan Plateau, with the air freezing and thawing indices using the University of Delaware (UDEL) monthly gridded air temperature dataset. The abrupt change years for air freezing index (AFI) and ground surface freezing index (GFI) were detected in 1999 and 2002, respectively, and for both air thawing index (ATI) and ground surface thawing index (GTI) were 2009. With the air temperature rising at a rate of 0.006 degrees C per year over 1900-2017, the AFI and GFI decreased at a rate of -0.1 degrees C d per year, while the ATI and GTI increased at rates of 0.3 and 0.5 degrees C d per year before the abrupt change year, respectively; all changing trends of freezing/thawing indices increased after the abrupt year, which was -2.9, -0.8, 7.3, and 21.7 degrees C d per year for the AFI, GFI, ATI, and GTI, respectively. We utilized the surface frost number model to obtain the dynamics of the frozen ground over the UBRB. When the empirical coefficient of E was assigned to 1.2, the simulated frozen ground occupied about 53.2% of the whole UBRB in the 1990s, which agreed well with the existing permafrost map published in 1996. The area of frozen ground accounts for 51.5%-54.5% of the UBRB during 1900-2017. This result may facilitate further studies of the multi-interactions among the frozen ground and relevant eco-environment, such as the air-ground surface energy exchange, hydrological cycles, and changes of the active layer thickness over the UBRB.