In this study, the effect of near-field and far-field ground motions on the seismic response of the soil pile system is investigated. The forward directivity effect, which includes a large velocity pulse at the beginning of the velocity time history of the ground motion is the most damaging phenomenon observed in near-field ground motions. To investigate the effect of near-field and far-field ground motions on the seismic response of a soil-pile system, a three-dimensional model consisting of the two-layer soil, liquefiable sand layer over dense sand, and the pile is utilized. Modeling is conducted in FLAC 3D software. The P2P Sand constitutive model is selected for sandy soil. Three fault-normal near-field and three far-field ground motion records were applied to the model. The numerical results show that near field velocity pulses have a considerable effect on the system behavior and sudden huge displacement demands were observed. Also, during the near-field ground motions, the exceeded pore water pressure coefficient (Ru) increases so that liquefaction occurs in the upper loose sand layer. Due to the pulse-like ground motions, a pulse-like relative displacement is created in response to the pile. Meanwhile the relative displacement response of the pile is entirely different due to the energy distribution during the far-field ground motions.
In order to investigate the frost-heaving characteristics of wintering foundation pits in the seasonal frozen ground area, an outdoor in-situ test of wintering foundation pits was carried out to study the changing rules of horizontal frost heave forces, vertical frost heave forces, vertical displacement, and horizontal displacement of the tops of the supporting piles under the effect of groundwater and natural winterization. Based on the monitoring condition data of the in-situ test and the data, a coupled numerical model integrating hydrothermal and mechanical interactions of the foundation pit, considering the groundwater level and phase change, was established and verified by numerical simulation. The research results show that in the silty clay-sandy soil strata with water replenishment conditions and the all-silty clay strata without water replenishment conditions, the horizontal frost heave force presents a distribution feature of being larger in the middle and smaller on both sides in the early stage of overwintering. With the extension of freezing time, the horizontal frost heave force distribution of silty clay-sand strata gradually changes from the initial form to the Z shape, while the all-silty clay strata maintain the original distribution characteristics unchanged. Meanwhile, the peak point of the horizontal frost heave force in the all-silty clay stratum will gradually shift downward during the overwintering process. This phenomenon corresponds to the stage when the horizontal displacement of the pile top enters a stable and fluctuating phase. Based on the monitoring conditions of the in-situ test, a numerical model of the hydro-thermo-mechanical coupling in the overwintering foundation pit was established, considering the effects of the groundwater level and ice-water phase change. The accuracy and reliability of the model were verified by comparison with the monitoring data of the in-situ test using FLAC3D finite element analysis software. The evolution of the horizontal frost heaving force of the overwintering foundation pit and the change rule of its distribution pattern under different groundwater level conditions are revealed. This research can provide a reference for the prevention of frost heave damage and safety design of foundation pit engineering in seasonal frozen soil areas.
Underground structures may be buried in liquefiable sites, which can cause complex seismic response mechanisms depending on the extent and location of the liquefiable soil layer. This study investigates the seismic response of multi-story underground structures in sites with varying distributions of liquified soil employing an advanced three-dimensional nonlinear finite element model. The results indicate that the extent and location of liquefied soil layers affect the seismic response characteristics of underground structures and the distribution of their damage. When the lower story of the subway station is buried in liquefied interlayer site, the structure experiences the most serious damage. When the structure is located within a liquefiable interlayer site, the earthquake ground motion will induce greater inter-story deformation in the structure, resulting in larger structural residual displacement. When all or part of the underground structure is buried in the liquefiable soil layer, the structural failure mode should be assessed to ensure that the underground rail transit can quickly restore functionality after an earthquake. Meanwhile, permeability effects of liquefiable soil have a significant impact on the dynamic response of subway station in the liquefiable site.
This paper proposes a carbon fiber reinforced polymer (CFRP) retrofitting scheme for improving the seismic performance of atrium-style metro stations (AMS). Past experimental studies have confirmed that the weakest of the AMS during strong earthquakes is located at the upper-story beam ends. However, there is thus far no candidate for a reference approach to retrofitting and strengthening the AMS. This study addresses this gap by applying CFRP retrofitting to both ends of the upper-story beam. The main objective is to assess the effectiveness of the proposed retrofitting scheme. First, a three-dimensional finite element model is developed to simulate dynamic soil-AMS interaction. The validity of the numerical method is assessed via a comparison with measured data from reduced-scale model tests. Second, a numerical model of the AMS retrofitted with CFRP is built using validated methods. Finally, dynamic time-history analyses of the AMS with and without CFRP retrofitting are conducted, and their dynamic responses, including inter-story drift, dynamic strain, and tensile damage, in conjunction with the lateral displacement of the surrounding ground, are compared. Comparison of the results for the non-retrofitted and retrofitted structures shows that CFRP retrofitting significantly reduces both the principal strains and tensile damage factors at the upper-story beam ends while slightly increasing those values at the mid-span of the beam; additionally, it does not change the structural lateral deformation. Therefore, it can be concluded that CFRP retrofitting could effectively improve the seismic performance of the AMS without changing its lateral stiffness.
The application of prefabricated assembly technology in underground structures has increasingly garnered attention due to its potential for urban low-carbon development. However, given the vulnerability of such structures subjected to unexpected seismic events, a resilient prefabricated underground structure is deemed preferable for mitigating seismic responses and facilitating rapid recovery. This study proposes a resilient slip-friction connection-enhanced self-centering column (RSFC-SCC) for prefabricated underground structures to promote the multi-level self-centering benefits against multi-intensity earthquakes. The RSFC-SCC is composed of an SCC with two sub-columns and a series of multi-arranged replaceable RSFCs, intended to substitute the fragile central column. The mechanical model and practical manufacturing approach are elucidated, emphasizing its potential multi-level self-centering benefits and working mechanism. Given the established simulation model of RSFC-SCC-equipped prefabricated underground structures, the seismic response characteristics and mitigation capacity are investigated for a typical underground structure, involving robustness against various earthquakes. A multi-level self-centering capacity-oriented design with suggested parameter selection criteria is proposed for the RSFC-SCC to ensure that prefabricated underground structures achieve the desired vibration mitigation performance. The results show that the SCC with multi-arranged replaceable RSFCs exhibits a significant vibration isolating effect and enhanced self-centering capacity for the entire prefabricated underground structure. Benefiting from the multi-level self-centering process, the RSFC-SCC illustrates a robust capacity that adapts to varying intensities of earthquakes. The multi-level self-centering capacity-oriented design effectively facilitates the target seismic response control for the prefabricated underground structures. The energy dissipation burden and residual deformation of primary structures are mitigated within the target performance framework. Given the replacement ease of RSFCs and SCC, a rapid recovery of the prefabricated underground structure after an earthquake is ensured.
Buried pipelines are essential for the safe and efficient transportation of energy products such as oil, gas, and various chemical fluids. However, these pipelines are highly vulnerable to ground movements caused by geohazards such as seismic faults, landslide, liquefaction-induced lateral spreading, and soil creep, which can result in potential pipeline failures such as leaks or explosions. Response prediction of buried pipelines under such movements is critical for ensuring structural integrity, mitigating environmental risks, and avoiding costly disruptions. As such, this study adopts a Physics-Informed Neural Networks (PINNs) approach, integrated with a transfer learning technique, to predict structural response (e.g., strain) of both unreinforced and reinforced steel pipes subjected to Permanent Ground Displacement (PGD). The PINN method offers a meshless, simulation-free alternative to traditional numerical methods such as Finite Element Method (FEM) and Finite Difference Method (FDM), while eliminating the need for training data, unlike conventional machine learning approaches. The analyses can provide useful information for in-service pipe integrity assessment and reinforcement, if needed. The accuracy of the predicted results is verified against Finite Element (FE) and Finite Difference (FD) methods, showcasing the capability of PINNs in accurately predicting displacement and strain fields in pipelines under geohazard-induced ground movement.
In recent years, excessive accumulations of iron (Fe), manganese (Mn), and nitrogen (N) have been observed in the groundwater of agricultural regions, particularly in flood irrigation areas. Nevertheless, the causes of this phenomenon and the associated hydrobiogeochemical processes remain elusive. This study demonstrated that redox fluctuations instigated by flood irrigation triggered a synergistic interaction between the N cycles and the activation of Fe and Mn oxides, thereby resulting in elevated concentrations of Fe, Mn, and N simultaneously. Static experiments revealed that the properties of the topsoil exerted a profound influence on the N induced release of Fe and Mn. The black soil (TFe: 1.5-2.3 times, Mn(II): 1.1-1.5 times, nitrate: 1.3-1.4 times) had greater release potential than meadow and dark brown soils due to higher electron donors/acceptors and substrates. Dynamic column experiments further elucidated that the wet-dry cycles induced by agricultural cultivation regulated the release process through the formation of zonal redox gradients and the structuring of microbial community. Organic nitrogen mineralization, chemolithotrophic nitrification, and Feammox/Mnammox were identified as the primary mechanisms responsible for the reductive dissolution of Fe-Mn oxides. On the other hand, autotrophic denitrification, with nitrate serving as the electron acceptor, constituted the main process for the reoxidation of Fe and Mn. Furthermore, the agricultural activities exerted a significant impact on the nitrate attenuation process, ultimately resulting in the recurrence of TFe (black soil: 1.5-6.3 times) and nitrate (black soil: 1.4-1.6 times) pollution during the phase after harvesting of rice (days 40-45) in saturated zone. The findings of this study not only deepened the understanding of the intricate interactions and coupled cycles between primary geochemical compositions and anthropogenic pollutants, but also provided a scientific foundation for the effective management and prevention of groundwater pollution stemming from agricultural cultivation processes.
Shallow cut-and-cover underground structures, such as subway stations, are traditionally designed as rigid boxes (moment-resisting connections between the main structural members), seeking internal hyperstaticity and high lateral (transverse) stiffness to achieve important seismic capacity. However, since seismic ground motions impose racking drifts, this proved rather prejudicial, with great structural damage and little resilience. Therefore, two previous papers proposed an opposite strategy seeking low lateral (transverse) stiffness by connecting the structural elements flexibly (hinging and sliding). Under severe seismic inputs, these structures would accommodate racking without significant damage; this behaviour is highly resilient. The seismic resilience of this solution was numerically demonstrated in the well-known Daikai station (Kobe, Japan) and a station located in Chengdu (China). This paper is a continuation of these studies; it aims to extend, deepen, and ground this conclusion by performing a numerical parametric study on these two stations in a wide and representative set of situations characterised by the soil type, overburden depth, engineering bedrock position, and high- and lowlateral-stiffness of the stations. The performance indices are the racking displacement and the structural damage (quantified through concrete damage variables). The findings of this study validate the previous remarks and provide new insights.
This computational study focuses on the thermo-hydro-mechanical simulations of the behaviors of freezing soils used for artificial ground freezing (AGF) in a metro project. Leveraging the experimental and field data available in the literature, we simulate the sequential freezing and excavation of a twin tunneling that occurred in months during the actual construction of the tunnel. A thermo-hydro-mechanical model is developed to capture the multi-physical rate-dependent behaviors triggered by phase transitions, as well as the creeping and secondary consolidation of the soil skeleton and the ice crystals. We then calibrate the material models and establish the THM finite element model coupled with the rate-dependent multi-physical models, which may accurately predict the surface heave induced by ground freezing throughout the project. To showcase the potential of using simulations to guide the AGF, we simulate the scenario where a simultaneous freezing scheme is employed as an alternative to the actual sequential scheme design. We then compared the simulated performance with the recorded results obtained from the sequential scheme. Finally, parametric studies on the effect of ground temperature, the porosity of the frozen soil, and the intrinsic elastic modulus of the solid skeleton are conducted. The maximum surface heave is inferred from finite element simulations to quantify the sensitivity and the impact on the safety of AGF operations.
The thermo-mechanical (TM) behaviour of the energy pile (EP) group becomes more complicated in the presence of seepage, and the mechanism by which seepage impacts the EP group remains unclear.In the current work, a 2 x 2 scale model test bench of EP group was set up to investigate the TM behaviour of EP group with seepage. The test results indicate that the heat exchange performance of EP group with seepage can be significantly enhanced, but also leads to obvious differences in the temperature distribution of pile and surrounding soil along the seepage direction, and thus causes evident differences in the mechanical properties between the front pile and the back pile in pile group. Compared with the parallel connection form, the thermal performance of EP group with the series connection form is slightly attenuated. However, the mechanical properties of various piles in the EP group differ significantly. Under the action of seepage, the mechanical balance properties of various piles in the forward series form are optimal, followed by the parallel form, and the reverse series form is the least optimal. A 3-D CFD model was established to further obtain the influence of seepage and arrangement forms on EP group. The findings indicate that seepage can not only mitigate thermal interference between distinct piles but also expedite the process of heat transfer from pile-soil to reach a state of stability. Concurrently, the thermal migration effect induced by seepage will be superimposed along the seepage direction, resulting in the elevation of thermal interference of each pile along the seepage direction, and the superposition of thermal migration effect increases with the time. Under the same seepage condition, the cross arrangement can enhance the thermal performance of EP group, optimize the temperature distribution of pile and soil, and thus the imbalance of mechanical properties among pile groups can be reduced. In addition, the concepts of thermal interference coefficient and heat exchange rate per unit soil volume are introduced to facilitate a more precise evaluation of the thermal interference degree of each pile in the pile group and the heat exchange performance under different pile arrangement forms.The standard deviation and mean value in the statistical method are used to evaluate the equilibrium of mechanical properties of pile group, which is more intuitive to compare the differences in mechanical properties of pile groups under different working conditions.