The European rabbit (Oryctolagus cuniculus) is a keystone species in Mediterranean ecosystems but also considered a pest in some agricultural areas. Despite its threatened status due to diseases and habitat loss, rabbit populations thrive in motorway verges, causing conflicts with human activities. In this study we examine the factors affecting rabbit warren abundance in motorway verges in central Spain, with implications for conservation and management. The research aimed to assess the importance of infrastructure (e.g. motorway slopes) and landscape (e.g. land use, soil depth) factors on rabbit warren abundance along 1631 km of motorway verges and to develop an index for broader-scale abundance and risk assessment. Using generalized linear mixed models, the study revealed that both infrastructure (slope) and landscape factors (soil depth, vegetation structure and land cover gradients) significantly influenced warren abundance. Rabbit warrens were more abundant in agricultural landscapes with deep soils and in intermediate slope ranges. The findings suggest that rabbit abundance in motorway verges is driven by a combination of factors involving both infrastructure features but also land use in surrounding areas. The derived model predictions were able to correctly discriminate between crop damaged and non-damaged areas, highlighting its potential as a tool for conflict mitigation and conservation planning. The study underscores the need to integrate landscape and infrastructure features into wildlife management strategies to address human-wildlife conflicts effectively. Future work should include direct population monitoring and explore broader ecological impacts, such as predator dynamics and wildlife-vehicle collisions.
Rapid urbanization and industrial growth in China have increased brownfield site reclamation, the sustainable remediation for urban transformation and enhancing ecosystem services. However, traditional brownfield safety assessment strategies impose unnecessary costs since excessive remediation. Herein, a comprehensive system integrated by soil self-purification, potential ecological risks and human health risks is developed to investigate the safety of brownfield sites. Indices, including soil environmental loading capacity (SELC), and Nemerow integrated pollution index (NIPI), were introduced to assess heavy metals (HMs) pollution. Results show that 72.05% of the sites are identified as moderate pollution, where Cd, As, and Cr(VI) are at heavy pollution, incorporating soil self-purification. The average values of potential ecological risk (PERI) reached 6615.00, posing a significant damage to the local ecosystem, and Cd was identified as main ecological hazards in the study sites. Furthermore, the health risk assessment shows that children's health risks are higher than that of adults, with non-carcinogenic risk to children (2.60) and adults (0.41), and carcinogenic risk to children (2.30 x 10-3) and adults (1.12 x 10-4). Utilizing a multi-index decision-making approach, it is determined that 19.30% of the site exhibit high-risk values, between concentration screening (11.40%) and risk screening (83.30%) base on single-indices. The study sheds light on the comprehensive assessment of brownfield site safety.
Termiticides are widely used to protect wooden houses from termites. Dieldrin, chlordane, heptachlor, and chlorpyrifos, which are effective termiticides, have been banned because of their high toxicity. Neonicotinoids, pyrethroids, phenyl pyrazoles, and triazoles have been used as alternatives to termiticides in indoor environments. However, despite numerous studies showing that farm-applied pesticides contaminate house dust, the health risks to humans from indoor termiticides remain unclear. We collected house dust and indoor air samples from 37 and 7 houses, respectively, to investigate the indoor termiticide contamination levels. The minimum margin of exposure to fipronil was 173, indicating that fipronil posed the highest risk among the targeted 28 compounds in indoor environment. The mean concentrations of alternative termiticides in house dust and air samples ranged from 1,126 ng g(- 1) (cyproconazole) to 5,356 ng g(- 1) (MGK-264) in thirty-seven houses and 0.08 ng m(- 3) (acetamiprid) to 34 ng m(- 3) (MGK-264) in seven houses, respectively. These results are comparable to the pesticide concentrations in houses close to farms where pesticides were applied, and are higher than atmospheric pesticide concentrations in oceans. Therefore, houses sprayed with termiticides may be as contaminated as agricultural environments where farmers apply substantial quantities of pesticides. The main route of exposure was air inhalation for fipronil, and both air inhalation and house dust ingestion for triazoles and potentiators. Establishment of regulations and development of decontamination methods are needed for indoor contamination of termiticides. Floor cleaning may be effective to remove termiticides that are ingested mainly through the house dust pathway.
This study evaluated the usability and effectiveness of robotic platforms working together with foresters in the wild on forest inventory tasks using LiDAR scanning. Emphasis was on the Universal Access principle, ensuring that robotic solutions are not only effective but also environmentally responsible and accessible for diverse users. Three robotic platforms were tested: Boston Dynamics Spot, AgileX Scout, and Bunker Mini. Spot's quadrupedal locomotion struggled in dense undergrowth, leading to frequent mobility failures and a System Usability Scale (SUS) score of 78 +/- 10. Its short, battery life and complex recovery processes further limited its suitability for forest operations without substantial modifications. In contrast, the wheeled AgileX Scout and tracked Bunker Mini demonstrated superior usability, each achieving a high SUS score of 88 +/- 5. However, environmental impact varied: Scout's wheeled design caused minimal disturbance, whereas Bunker Mini's tracks occasionally damaged young vegetation, highlighting the importance of gentle interaction with natural ecosystems in robotic forestry. All platforms enhanced worker safety, reduced physical effort, and improved LiDAR workflows by eliminating the need for human presence during scans. Additionally, the study engaged forest engineering students, equipping them with hands-on experience in emerging robotic technologies and fostering discussions on their responsible integration into forestry practices. This study lays a crucial foundation for the integration of Artificial Intelligence (AI) into forest robotics, enabling future advancements in autonomous perception, decision-making, and adaptive navigation. By systematically evaluating robotic platforms in real-world forest environments, this research provides valuable empirical data that will inform AI-driven enhancements, such as machine learning-based terrain adaptation, intelligent path planning, and autonomous fault recovery. Furthermore, the study holds high value for the international research community, serving as a benchmark for future developments in forestry robotics and AI applications. Moving forward, future research will build on these findings to explore adaptive remote operation, AI-powered terrain-aware navigation, and sustainable deployment strategies, ensuring that robotic solutions enhance both operational efficiency and ecological responsibility in forest management worldwide.
Industrial development has caused significant environmental damage, especially through potentially toxic element (PTE) pollution. Combining pollution indices, health risk assessment, spatial autocorrelation (Moran's I), and receptor modeling (APCS/MLR), this study quantified sources and risks of heavy metals in smelting-adjacent farmland soils, facilitating targeted PTE pollution mitigation. Soil analysis revealed significantly elevated mean concentrations of As (326 mg/kg), Cd (23 mg/kg), Cr (104 mg/kg), Cu (106 mg/kg), Ni (73 mg/kg), Pb (274 mg/kg), and Zn (660 mg/kg), all exceeding Yunnan provincial background values. The average total non-carcinogenic risk index (HIadult = 2, HIchild = 11) and total carcinogenic risk index (TCRadult = 5.52 x 10-4, TCRChild = 6.44 x 10-4) for both adults and children exceeded the threshold (HI = 1, TCR = 1 x 10-04). The results of environmental pollution evaluation show that the overall pollution in the study area is a heavy pollution level. The ACPS-MLR model showed that Cd and Zn in soil mainly came from industrial activities (37%). Cu and Pb were derived from motor vehicle emissions and agricultural activities (20%). As may be derived from agricultural and industrial activities. Furthermore, based on the combination of source apportionalization and the spatial distribution of environmental pollution, the northeastern part of the study area and transportation hubs are the key pollution areas and need to be given priority for treatment. PTEs accumulate in the soil, will be enriched through the food chain, and seriously threaten human health and soil ecological environment. Therefore, this study can provide a basis for identifying, preventing, and controlling the risk of PTEs pollution in soil.
Long-term exposure to Cd through contaminated food can lead to multiple adverse health effects on humans. Although previous studies have covered global food Cd concentrations and dietary Cd exposures across different populations, there are increasing concerns regarding the adequacy of current food Cd safety standards to protect populations from adverse health effects. Moreover, incorporation of Cd relative bioavailability (Cd-RBA) in foods improves the accuracy of health risk assessment. However, factors influencing food Cd-RBA have not been systematically discussed, thereby hindering its application in risk assessment. This review aims to provide an overview of Cd contents in foods, discuss concerns regarding international food Cd concentration standards, explore factors influencing food Cd bioavailability, and highlight the opportunities and challenges in refining differences between dietary Cd intakes and body burdens. Our findings suggest that current safety standards may be insufficient to protect human health, as they primarily focus on kidney damage as the protective endpoint and fail to account for global and regional variations in food consumption patterns and temporal changes in dietary habits over time. Factors such as crop cultivars and food compositions greatly influence food Cd-RBA. To improve the accuracy of Cd health risk assessment, future studies should incorporate food Cd-RBA, sociodemographic characteristics, nutritional status, and incidental Cd exposure. This review highlights new insights into food Cd safety standards and Cd bioavailability, identifies critical knowledge gaps, and offers recommendations for refining health risk assessments. This information is essential to inform future bioavailability investigations, health risk assessment, and safety standard development.
Currently, there is a growing concern for human health with the rise of environmental pollution. Water contamination and health problems had been understood. Sanitation-related health issues have been overcome in the greater part of the world. Progressive industrialization has caused a number of new pollutants in water and in the atmosphere. It is a growing concern for the human health, especially upon the reproductive health. Current researchers provide a strong association between the rising concentrations of ambient pollutants and the adverse health impact. Furthermore, the pollutants have the adverse effects upon reproductive health as well. Major concern is for the health of a pregnant woman and her baby. Maternal-fetal inflammatory response due to the pollutants affects the pregnancy outcome adversely. Preterm labor, fetal growth restriction, intrauterine fetal death, and stillbirths have been observed. Varieties of pathological processes including inflammation, endocrine dysfunction, epigenetic changes, oxidative and nitrosative stress, and placental dysfunction have been explained as the biological plausibility. Prospective studies (systematic review and meta-analysis) have established that exposure to particulate matters (PM) and the nanoparticles (NP) leads to excessive oxidative changes to cause DNA mutations, lipid peroxidation and protein oxidation. Progressive industrialization and emergence of heavy metals, micro- (MP) and nanoparticles (NP) in the atmosphere and in water are the cause for concern. However, most of the information is based on studies from industrialized countries. India needs its own country-based study to have the exact idea and to develop the mechanistic pathways for the control.
Rare earth elements (REEs) are increasingly recognized as significant environmental pollutants due to their environmental persistence, bioaccumulation, and chronic toxicity. This study assessed REEs pollution in soil, water, and vegetables in an ion-adsorption rare earth mining area in Ganzhou, and evaluated the associated health risks to the local population. Results indicated that the REEs content in soil ranged from 168.58 to 1915.68 mg/kg, with an average of 546.71 mg/kg, substantially surpassing the background level for Jiangxi Province (243.4 mg/kg) and the national average (197.3 mg/kg). Vegetables displayed an average REEs content of 23.17 mg/kg in fresh weight, far exceeding the hygiene standard of 0.7 mg/kg. Water samples contained REEs at a concentration of 4.09 mu g/L. The estimated daily intake (EDI) of REEs from vegetables exceeded the threshold for subclinical damage, posing potential health risks, particularly for children and adolescents. Further analysis of the adjusted average daily intake (ADI) and non-carcinogenic risk suggested that while most vegetable consumption remains within safe threshold, the intake of REEs from high-risk vegetables such as pakchoi should be limited. Overall, carcinogenic risks associated with lifetime cancer risk (LCR) model for REEs exposure through vegetables and water were found to be low in this area.
Wildfires, both natural and man-made, release and mobilize hazardous substances such as heavy metal(loids) (HM), which are known carcinogens. Following intense rainfall events, HM bound to soil organic matter are transported from the soil to surface water, resulting in water quality degradation. This study reviews the pollution status of HM in wildfire-affected soil and surface water, as well as their toxic effects on aquatic organisms and humans. The rate of HM release during wildfires depends on factors such as the type of tree burned and fire severity. The mobility of HM from soil to surface water is influenced by soil pH, organic matter content, rainfall intensity, and duration. The risk priority number (RPN) analysis indicates that both wildfire-affected soil and surface water require remediation to address HM contamination. HM concentrations in both soil and surface water decrease over time due to soil erosion, wind, storm events, and the depletion of burnt residues. The greatest percentage changes in HM concentrations in burned soils compared to unburned soils were observed for vanadium (340%), nickel (260%), and arsenic (110%). In surface water, the highest increases were seen for iron (740%), vanadium (530%), and aluminium (510%). Wildfire-affected water has been shown to cause toxic effects in aquatic organisms, including DNA damage, oxidative stress, and lipid peroxidation. The consumption of HMcontaminated water and fish poses significant health risks to humans. Therefore, post-fire monitoring of wildfireaffected areas is essential for designing treatment plants, assessing risks, and establishing maximum allowable HM concentrations in water.
This paper discusses information collected from original articles published between 1992 and 2022 regarding heavy metals (HMs) contamination in various environments across Mexico. The primary aim of this work was to identify the Mexican states where concentrations of HMs have been reported to exceed the maximum permissible limits for several types of soil, water, and sediment according to Mexican standards NOM-147-SEMARNAT/SSA1-2004, NOM-127-SSA1-2021, as well as international standards. The data collected indicates that 25 states in Mexico have reported at least one metal exceeding the maximum permissible limits in soil. Among these, Zacatecas, Nuevo Leon and Chihuahua had the highest number of HMs exceeding the standards. For sediment contamination, 26 states exceeded the permissible limits, with San Luis Potos & iacute; and Guerrero showing the highest number of HMs above the standards. Additionally, 26 states have reports of HMs exceeding the permissible limits in water, with Guanajuato and Guerrero having the highest number of HMs. Interestingly, the most frequent metals reported as soil contaminants are Cu, Fe, Pb and Zn; in sediment, they are Cd, Cr, Cu, Fe, Pb and Zn; and in water, they are Cd, Cr, Cu, Fe, Mn, Pb and Zn. The compiled information indicates that the primary anthropogenic sources of HMs release in Mexico include industrial activities, urban wastewater, mining, and agricultural practices. Furthermore, the data analyzed highlights several serious health risks associated with exposure to HMs, including cancer, central nervous system damage, DNA damage, and issues related to kidneys and lungs. This paper provides a comprehensive overview of HMs contamination in Mexico as well as the health challenges that arise from this contamination..