共检索到 2

Intra-annual variability of tree-ring oxygen stable isotopes (delta O-18) can record seasonal climate variability and a tree's ecophysiological response to it. Variability of sub-annual tree-ring delta O-18 maxima and minima, which usually occur in different parts of the growing season, may exhibit different climatic signals and can help in understanding past seasonal moisture conditions, especially in Asian monsoon areas. We developed minimum and maximum tree-ring delta O-18 series based on sub-annual tree-ring delta O-18 measurements ofPinus massonianaat a humid site in southeastern China. We found that interannual variability in minimum tree-ring delta O-18 is primarily controlled by the July-September soil water supply and source water delta O-18, whereas the maximum latewood tree-ring delta O-18 is primarily controlled by the relative humidity (RH) in October. The maximum of variability of earlywood tree-ring delta O-18 records the RH of October of the previous year. We used minimum and maximum tree-ring delta O-18 to develop two reconstructions (1900-2014) of seasonal moisture availability. The summer soil water supply (July-September self-calibrated Palmer drought severity index) and the RH in fall show contrasting trends, which may be related to late-growing seasonal warming leading to a high vapor capacity and high atmospheric moisture. Our findings are valuable for research that aims to explore seasonal moisture changes under anthropogenic climate change and the ecological implications of such contrasting trends.

期刊论文 2022-05-03 DOI: http://dx.doi.org/10.1088/1748-9326/ab9792 ISSN: 1748-9326

This study analyzes mid-21st century projections of daily surface air minimum (T-min) and maximum (T-max) temperatures, by season and elevation, over the southern range of the Colorado Rocky Mountains. The projections are from four regional climate models (RCMs) that are part of the North American Regional Climate Change Assessment Program (NARCCAP). All four RCMs project 2A degrees C or higher increases in T-min and T-max for all seasons. However, there are much greater (> 3A degrees C) increases in T-max during summer at higher elevations and in T-min during winter at lower elevations. T-max increases during summer are associated with drying conditions. The models simulate large reductions in latent heat fluxes and increases in sensible heat fluxes that are, in part, caused by decreases in precipitation and soil moisture. T-min increases during winter are found to be associated with decreases in surface snow cover, and increases in soil moisture and atmospheric water vapor. The increased moistening of the soil and atmosphere facilitates a greater diurnal retention of the daytime solar energy in the land surface and amplifies the longwave heating of the land surface at night. We hypothesize that the presence of significant surface moisture fluxes can modify the effects of snow-albedo feedback and results in greater wintertime warming at night than during the day.

期刊论文 2012-10-01 DOI: 10.1007/s00382-011-1282-z ISSN: 0930-7575
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页