The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a biogeotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.
To evaluate the beneficial effect of rubber bearings on the seismic performance of underground station structures, three-dimensional finite element models of seismic soil-structural systems are established for a single-layer double span subway station. The seismic mitigation effect is investigated by employing the pushover analysis method. The obtained results indicated that the installation of rubber bearings can effectively alleviate stress concentration and damage degree of the central column, especially at its end area. Compared with the conventional column, the elastic and elastoplastic deformation capacity of the column fitted with rubber bearings both improved significantly. It was also found that the load bearing and deformation performance decrease with the increase of the axial pressure ratio. Furthermore, the lateral force distribution mechanism of the structural system fitted with the rubber bearings is significantly different from the original structure; the deformation and internal forces of central column of the seismic mitigation structure decreased substantially, but side walls' deformation and internal forces increased slightly. The proportion of shear force taken by the central column has decreased, while the side walls have taken larger share, i.e., the rubber bearings facilitated the transfer of seismic forces from the middle column to the side wall.
Biochar has been considered a promising material for soil carbon sequestration. However, there are huge knowledge gaps regarding the carbon reduction effects of biochar-plant-polluted soil. Here, rice straw biochar (RB) was applied in ryegrass-cadmium (Cd)-contaminated soil to investigate the full-cycle carbon dioxide (CO2) emission and intrinsic mechanism. RB resulted in a 37.00 %-115.64 % reduction in accumulative CO2 emissions and a 31.61 %-45.80 % reduction in soil bioavailable Cd throughout the whole phytoremediation period. CO2 emission reduction triggered by RB can be attributed to the regulation of plant and rhizosphere ecological functions. RB could bolster photosynthetic carbon fixation by maintaining the stability of the structure of the chloroplasts and thylakoids, accelerating the consumption of terminal photosynthate, upregulating photosynthetic pigments, and mitigating oxidative damage. Besides, RB reduced the metabolism of readily mineralizable carbon sources while reinforcing the utilization of certain nutrient substrates. Besides, the composition of rhizosphere microbial communities was altered, especially those associated with carbon cycling (Chloroflexi, Actinobacteriota, and Acidobacteriota phyla) to orient soil microbial evolution to lower soil CO2 emission. This study aims to establish a win-win paradigm of carbon reduction-pollution alleviation to deepen the understanding of biochar in carbon neutrality and soil health and provide a theoretical basis for field pilot-scale studies.
Ground vibrations from operating railway in tunnels is a significant obstacle to sustainable development of subway. The backfill grouting layer, formed during shield tunneling, serves as a critical medium in propagation of tunnel vibrations, highlighting its potential in vibration mitigation. A semi-analytical model for the tunnelgrouting layer-soil system is proposed in this study, in order to clarify the influence of backfill grouting layer on the dynamic responses in a half-space, subjected to tunnel vibrations. In establishment of the closed-form solution, the tunnel and grouting layer are considered as two nested hollow cylinders embedded in a halfspace, with applying the Fourier transform and wave transformation. As a validation, the numerical results from the proposed semi-analytical model are compared with those reported in literature. Parametric studies, with respect to the geometric configuration (i.e., the thickness) and material parameters (i.e., the Young's modulus, material damping, and density) of the backfill grouting layer in the mitigation of tunnel vibrations, are carried out. It is found that incorporation of the backfill grouting layer significantly changes the dynamic responses of the soil and, by appropriately designing its material parameters, especially the Young's modulus, effective mitigation of tunnel vibrations can be achieved.
Effective erosion mitigation in the Pisha sandstone region is crucial for soil and water conservation in the Yellow River Basin, yet existing vegetation measures are inadequate in water-limited environments. This study examines the application of drought-tolerant biological soil crusts (biocrusts) for erosion control on sandstone slopes and evaluates their erosion-reducing effects under varying coverage and slope conditions through controlled artificial rainfall experiments. Key findings include: (1) biocrusts coverage demonstrated a linear relationship with initial runoff generation time and an exponential relationship with stable runoff generation time. On average, biocrusts delayed initial runoff generation by 396.32 % and extended stable runoff generation time by 153.93 %, thereby increasing the threshold for both initial and stable runoff generation on Pisha-sandstone surfaces. (2) biocrusts reduced runoff volume by an average of 23.89 %, enhanced infiltration volume by 69.19 %, decreased sediment yield by 64.24 %, and lowered the soil erosion modulus by 68.98 %. These results indicated significant promotion of water infiltration and reduction of water erosion. Both effects were positively influenced by coverage and negatively impacted by slope gradient. A critical slope angle of 15 degrees and a critical coverage of 60 % were identified. When the slope was gentle (S 15 degrees), the negative impact of slope predominated, diminishing the positive effect of biocrusts. Additionally, when coverage reached or exceeded 60 %, further increaseing in coverage accelerated the enhancement of infiltration and erosion reduction. Below this threshold, the rate of improvement gradually diminished with increasing coverage. (3) The structural equation model further elucidated that biocrusts mitigate erosion by enhancing the coverage, thereby reducing runoff velocity and modifying the runoff regime. This mechanism effectively dissipates runoff energy, leading to a decreased soil detachment rate and alleviation of soil erosion. Additionally, the relationship between runoff energy and soil detachment rate follows a power function curve, providing an effective method for predicting erosion in Pisha sandstone area. Consequently, biological soil crust technology shows considerable potential for preventing water erosion damage on Pisha sandstone slopes across various gradients.
After sand liquefaction, buried underground structures may float, leading to structural damage. Therefore, implementing effective reinforcement measures to control sand liquefaction and soil deformation is crucial. Stone columns are widely used to reinforce liquefiable sites, enhancing their resistance to liquefaction. In this study, we investigated the mitigation effect of stone columns on the uplift of a shield tunnel induced by soil liquefaction using a high-fidelity numerical method. The liquefiable sand was modeled using a plastic model for large postliquefaction shear deformation of sand (CycLiq). A dynamic centrifuge model test on stone column-improved liquefiable ground was simulated using this model. The results demonstrate that the constitutive model and analysis method effectively reproduce the liquefaction behavior of stone column-reinforced ground under seismic loading, accurately reflecting the time histories of excess pore pressure ratio and acceleration. Subsequently, numerical simulations were employed to analyze the liquefaction resistance of saturated sand strata and the response of a shield tunnel before and after reinforcement with stone columns. Additionally, the effects of densification and drainage of the stone columns were separately studied. The results show that, after installing stone columns, the excess pore pressure ratio at each measurement point significantly decreased, eliminating liquefaction and mitigating the uplift of the tunnel. The drainage effect of the stone columns emerged as the primary mechanism for dissipating excess pore pressure and reducing tunnel uplift. Furthermore, the densification effect of stone columns effectively reduces soil settlement, particularly pronounced around the stone columns, i.e., at a distance of three times the diameter of the stone column.
Salinity stress poses a critical threat to global crop productivity, driven by factors such as saline irrigation, low precipitation, native rock weathering, high surface evaporation, and excessive fertilizer application. This abiotic stress induces oxidative damage, osmotic imbalance, and ionic toxicity, severely affecting plant growth and leading to crop failure. Silicon (Si) has emerged as a versatile element capable of mitigating various biotic and abiotic stresses, including salinity. This review offers a comprehensive analysis of Si's multifaceted role in alleviating salinity stress, elucidating its molecular, physiological, and biochemical mechanisms in plants. It explores Si uptake, transport, and accumulation in plant tissues, emphasizing its contributions to maintaining ionic balance, enhancing water uptake, and reinforcing cell structural integrity under saline conditions. Additionally, this review addresses Si transformations in saline soils and the factors influencing its bioavailability. A significant focus is placed on silicon-solubilizing microorganisms (SSMs), which enhance Si bioavailability through mechanisms such as organic acid production, ligand exchange, mineral dissolution, and biofilm formation. By improving nutrient cycling and mitigating salinity-induced stress, SSMs offer a sustainable alternative to synthetic silicon fertilizers, promoting resilient crop production in salt-affected soils.
Cadmium (Cd) contamination in agricultural soils poses a serious threat to crop productivity and food security, necessitating effective mitigation strategies. This study investigates the role of silicon nanoparticles (SiNPs) in alleviating Cd-induced stress in maize (Zea mays L.) under controlled greenhouse conditions. Sterilized maize seeds were sown in sand-filled pots and treated with varying SiNP concentrations (0%, 0.75%, 1.5%, 3%, and 6%) with or without Cd (30 ppm). Physiological, biochemical, and antioxidant parameters were analyzed to assess plant responses. Results demonstrated that SiNPs significantly enhanced photosynthetic pigment concentrations, with chlorophyll-a, chlorophyll-b, and carotenoids increasing by 45%, 35%, and 50%, respectively, in the 6% SiNP + 30 ppm Cd treatment. Biochemical analyses revealed improved osmotic adjustment, as indicated by higher soluble protein (6.52 mg/g FW) and proline (314.43 mu mol/g FW) levels. Antioxidant enzyme activities, including superoxide dismutase, catalase, and ascorbate peroxidase, were markedly higher in SiNP-treated plants, mitigating oxidative damage. Additionally, SiNPs reduced Cd accumulation in plant tissues, suggesting a protective role in limiting metal toxicity. These findings highlight SiNPs as a promising approach for enhancing maize resilience against Cd stress, with potential applications in sustainable agriculture for improving crop health in contaminated soils.
The current study focuses on the long term strength reduction in lime stabilised Cochin marine clays with sulphate content. By introducing 6% lime and 4% sulphates to untreated Cochin marine clay, the research aims to investigate the effect of sulphates in these clays. Unconfined compression tests were conducted on lime treated clay both with and without additives, immediately after preparation and over 1 week, 1 month, 3 months, 6 months, 1 year and 2 years of curing. Test results indicated that both sodium sulphate and lithium sulphate has a negative impact on the strength gain of lime stabilised clay. To address this issue, Barium hydroxide, in both its pure laboratory form and the commercial product known as baryta, was incorporated into the lime stabilised soil. The study showed a consistent increase in shear strength with the addition of both barium hydroxide and baryta. When twice the predetermined quantity of baryta was added to lime stabilised clay, it outperformed pure barium hydroxide in terms of strength enhancement. Results of SEM and XRD analysis align with the strength characteristics. The cost-effective use of baryta offers a practical solution to counteract strength loss in lime stabilised, sulphate bearing Cochin marine clays.
Permafrost degradation is one of the most significant consequences of climate change in the Arctic. During summers, permafrost degradation is evident with cryospheric hazards like retrogressive thaw slumps (RTSs) and active layer detachment slides (ALDs). In parallel, the Arctic has become a popular tourist destination for nature-based activities, with summer being the peak touristic season. In this context, cryospheric hazards pose potential risks for tourists' presence in Arctic national parks and wilderness in general, like in the Yukon. This essay provides the basis for investigating further periglacial, geomorphological and tourism intersections, highlighting the critical need for future interdisciplinary research on thawing permafrost impacts. More so, this requires moving beyond the predominant focus on permafrost impacts on infrastructure and to also consider the direct threats posed to human physical presence in Arctic tourist destinations affected by permafrost degradation. Such interdisciplinary approach is critical not only to mitigate risks, but also to provide policy- and decision-makers with valuable insights for implementing measures and guidelines.