Freeze-thaw-induced N2O pulses could account for nearly half of annual N2O fluxes in cold climates, but their episodic nature, sensitivity to snow cover dynamics, and the challenges of cold-season monitoring complicate their accurate estimation and representation in global models. To address these challenges, we combined in situ automated high-frequency flux measurements with cross-ecoregion soil core incubations to investigate the mechanisms driving freeze-thaw-induced N2O emissions. We found that deepened snow significantly amplified freeze-thaw N2O pulses, with these similar to 50-day episodes contributing over 50% of annual fluxes. Additionally, freeze-thaw-induced N2O pulses exhibited significant spatial heterogeneity, ranging from 3.4 to 1184.1 mu g N m(-2) h(-1) depending on site conditions. Despite significant spatiotemporal variation, our results indicated that 68%-86% of this variation can be explained by shifts in controlling factors: from water-filled pore space (WFPS), which drove anaerobic conditions, to microbial constraints as snow depth increases. Below 43% WFPS, soil moisture was the overwhelmingly dominant driver of emissions; between 43% and 66% WFPS, moisture and microbial attributes (including denitrifying gene abundance, nitrogen enzyme kinetics, and microbial biomass) jointly triggered N2O emissions pulses; above 66% WFPS, microbial attributes, particularly nitrogen enzyme kinetics, prevailed. These findings suggested that maintaining higher soil moisture served as a trigger for activating microbial activity, particularly enhancing nitrogen cycling. Furthermore, we showed that hotspots of freeze-thaw-induced N2O emissions were linked to high root production and microbial activity in cold and humid grasslands. Overall, our study highlighted the hierarchical control of WFPS and microbial processes in driving freeze-thaw-induced N2O emission pulses. The easily measurable WFPS and microbial attributes predictable from plant and soil properties could forecast the magnitude and spatial distribution of N2O emission hot moments under changing climate. Integrating these hot moments, particularly the dynamics of WFPS, into process-based models could refine N2O emission modeling and enhance the accuracy of global N2O budget prediction.
The impact of global climate change and human-induced nitrogen (N) deposition on winter weather patterns will have consequences for soil N cycling and greenhouse gas emissions in temperate deserts. Biological soil crusts (referred to as biocrusts) are crucial communities in soil and significant sources of nitrous oxide (N2O) emission in desert ecosystems and are sensitive to environmental changes. The contribution of bacteria and fungi to N2O production in drylands has been acknowledged. However, the effect of changes in snow cover and N deposition on the N2O production of different microbial groups of microorganisms is not yet clear. In this study, we examine the responses of fungi and bacteria mediated pathways involved in soil N2O production from biocrusts to longterm snow cover manipulation and N addition experiments in the Gurbantunggut Desert. These soils were incubated and subjected to biocide treatments (such as cycloheximide and streptomycin, and fungal and bacterial inhibitors), after which rates of potential nitrification and N2O production were measured. Compared with controls, snow removal treatments from bare sand, lichen crust and moss crust reduced background rates of N2O production by 29.41 %, 26.21 % and 20.49 %, respectively; N2O production rates were 1.53-fold higher in bare sand, 1.38-fold higher in lichen crust, and 1.56-fold higher in moss crust after N addition. The addition of streptomycin significantly reduced the potential nitrification rates of bare sand and biocrusts, indicating that bacteria may be important sources of NO3- production in biocrusts rather than fungi. Conversely, fungi were main sources of N2O production in biocrusts. Additionally, fungi also played a major role in N2O production in biocrusts after snow cover manipulation and N addition. Both snow cover manipulation and N addition treatment indirectly affected the N2O production in biocrusts by considerably affecting the content of substrate N and the abundance of microbial groups. Our research suggests that fungi are main contributors for denitrification in biocrusts, and that snow cover changes (removal snow and double snow) and N addition alter the contribution of biotic pathways responsible for N cycling.
Insect foliar herbivory is ubiquitous in terrestrial ecosystems, yet its impacts on soil nitrogen cycling processes remain not yet well known. To examine the impacts of insect foliar herbivory on soil N2O emission flux and available nitrogen (N), we conducted a pot experiment to measure soil available N content and soil N2O emission flux among three treatments (i.e., leaf herbivory, artificial defoliation, and control,) in two broad-leaved trees (Cinnamomum camphora and Liquidambar formosana) and two conifer trees (Pinus massonianna and Cryptomeria fortunei). Our results showed that insect foliar herbivory significantly increased soil inorganic N (i.e., NH4+-N and NO3--N), dissolved organic nitrogen (DON) and microbial biomass nitrogen (MBN) contents, and urease activity compared to control treatment. However, there were no differences in soil available N contents and urease activity between artificial defoliation and control treatments, implying that insect foliar herbivory had greater impacts on soil available N contents compared to physical damage of leaves. Moreover, soil N2O emission fluxes were increased by insect foliar herbivory in Cinnamomum camphora and Pinus massonianna, but not for the other two tree species, indicating various effect of insect foliar herbivory on soil N2O emission among tree species. Furthermore, our results showed the positive correlations between soil N2O emission flux and soil NO3--N, DON, MBN, and acid protease activity, and soil inorganic N, pH, and MBN mainly explained soil N2O emission. Our results implied that insect foliar herbivory can speed up soil nitrogen availability in subtropical forests, but the impacts on soil N2O emission are related to tree species.
Climate change mitigation requires creative solutions to reduce greenhouse gases (GHG). Little research has been performed on GHG emissions from shaded turfgrass systems, resulting in a lack of best management practice (BMP) development. The aim of this research was to investigate the soil flux of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) as impacted by shade [shade (98.8%) versus sun (100%)] and differing sources (fast- versus slow-release) and rates (147 versus 294 kg ha-1 yr-1) of nitrogen (N) fertilizers on creeping bentgrass putting greens. The results show that emissions of soil CO2 and soil N2O are significantly lower in shaded plots versus sunny plots. The presence of N fertilizer significantly increased soil CO2 emissions over unfertilized plots. Quick-release N fertilizer fluxed significantly more soil N2O than the slow-release N fertilizers. Turfgrass color was significantly higher on the sunny green versus the shaded green except in late summer. Turfgrass quality was significantly higher for the shaded green versus the sunny green. Milorganite improved turfgrass quality whereas urea decreased turfgrass quality due to fertilizer burn. When N is needed to improve turfgrass color and quality, the use of slow-release N sources should be a BMP for shaded greens.
Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.
There is a need to explore management practices that reduce nitrate (NO3-) leaching and aid in meeting current greenhouse gas reduction goals. Tile drainage involves using perforated pipes to remove excess subsurface water from agricultural fields, also removing nutrients. The inclusion of cover crops in tile -drained systems in the Midwest has been shown to reduce NO3 - losses and is potentially a strategy to mitigate soil nitrous oxide (N2O) emissions. The objectives of this research were to 1) evaluate cumulative soil NO3 - and soil N2O losses with and without the inclusion of cover crops in a corn -soybean rotation on a tile -drained landscape and; 2) assess the environmental damage cost (EDC) of N losses with and without the inclusion of cover crops in a corn -soybean rotation on a tile -drained landscape. Corn (Zea mays L.) was grown in 2017, and soybean (Glycine max L.) in 2018. The cover crop used in this experiment was a 92% cereal rye (Secale cereal L.) and 8% daikon radish (Raphanus sativus L.) blend. Treatments included cover crop inclusion, no cover crop inclusion, and a zero control, which did not include cover crops or receive N fertilization. Each treatment was replicated three times in individually tile -drained plots established in Lexington, IL during the 2017 and 2018 growing seasons. In 2017, cover crop inclusion led to a reduction in NO3- losses of over 50% when compared to the no cover and zero control. In 2018, total N losses were identical; however, there was an increase in soil N2O emissions across all treatments compared to 2017. Despite the apparent tradeoff between N loss pathways in 2018, the overall EDC was reduced primarily because of the reduction in NO3 - loss in the presence of cover crops. The results of this study indicated that the inclusion of a cover crop resulted in a sizeable reduction in N loss during the corn year that equated to a 64% reduction in EDC across a two-year crop rotation.
The greenhouse gas (GHG) balance of boreal peatlands in permafrost regions will be affected by climate change through disturbances such as permafrost thaw and wildfire. Although the future GHG balance of boreal peatlands including ponds is dominated by the exchange of both carbon dioxide (CO2) and methane (CH4), disturbance impacts on fluxes of the potent GHG nitrous oxide (N2O) could contribute to shifts in the net radiative balance. Here, we measured monthly (April to October) fluxes of N2O, CH4, and CO2 from three sites located across the sporadic and discontinuous permafrost zones of western Canada. Undisturbed permafrost peat plateaus acted as N2O sinks (-0.025 mg N2O m(-2) d(-1)), but N2O uptake was lower from burned plateaus (-0.003 mg N2O m(-2) d(-1)) and higher following permafrost thaw in the thermokarst bogs (-0.054 mg N2O m(-2) d(-1)). The thermokarst bogs had below-ambient N2O soil gas concentrations, suggesting that denitrification consumed atmospheric N2O during reduction to dinitrogen. Atmospheric uptake of N2O in peat plateaus and thermokarst bogs increased with soil temperature and soil moisture, suggesting sensitivity of N2O consumption to further climate change. Four of five peatland ponds acted as N2O sinks (-0.018 mg N2O m(-2) d(-1)), with no influence of thermokarst expansion. One pond with high nitrate concentrations had high N2O emissions (0.30 mg N2O m(-2) d(-1)). Overall, our study suggests that the future net radiative balance of boreal peatlands will be dominated by impacts of wildfire and permafrost thaw on CH4 and CO2 fluxes, while the influence from N2O is minor.
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in Arctic ecosystems. We investigated in situ effects of an experimental fire in 2017 on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) surface fluxes in the most abundant tundra ecosystem in West Greenland in ambient and warmer conditions. Measurements from the growing seasons 2017 to 2019 showed that burnt areas became significant net CO2 sources for the entire study period, driven by increased ecosystem respiration (ER) immediately after the fire and decreased gross ecosystem production (GEP). Warming by open-top chambers significantly increased both ER and GEP in control, but not in burnt plots. In contrast to CO2, measurements suggest that the overall sink capacity of atmospheric CH4, as well as net N2O emissions, were not affected by fire in the short term, but only immediately after the fire. The minor effects on CH4 and N2O, which was surprising given the significantly higher nitrate availability observed in burnt plots. However, the minor effects are aligned with the lack of significant effects of fire on soil moisture and soil temperature. Net uptake and emissions of all three GHG from burnt soils were less temperature-sensitive than in the undisturbed control plots. Overall, this study highlights that wildfires in a typical tundra ecosystem in Greenland may not lead to markedly increased net GHG emissions other than CO2. Additional investigations are needed to assess the consequences of more severe fires.
Large quantities of organic matter are stored in frozen soils (permafrost) within the Qinghai-Tibetan Plateau (QTP). The most of QTP regions in particular have experienced significant warming and wetting over the past 50 years, and this warming trend is projected to intensify in the future. Such climate change will likely alter the soil freeze-thaw pattern in permafrost active layer and toward significant greenhouse gas nitrous oxide (N2O) release. However, the interaction effect of warming and altered soil moisture on N2O emission during freezing and thawing is unclear. Here, we used simulation experiments to test how changes in N2O flux relate to different thawing temperatures (T-5-5 degrees C, T-10-10 degrees C, and T-20-20 degrees C) and soil volumetric water contents (VWCs, W-15-15%, W-30-30%, and W-45-45%) under 165 F-T cycles in topsoil (0-20 cm) of an alpine meadow with discontinuous permafrost in the QTP. First, in contrast to the prevailing view, soil moisture but not thawing temperature dominated the large N2O pulses during F-T events. The maximum emissions, 1,123.16-5,849.54 mu g m(-2) h(-1), appeared in the range of soil VWC from 17% to 38%. However, the mean N2O fluxes had no significant difference between different thawing temperatures when soil was dry or waterlogged. Second, in medium soil moisture, low thawing temperature is more able to promote soil N2O emission than high temperature. For example, the peak value (5,849.54 mu g m(-2) h(-1)) and cumulative emissions (366.6 mg m(-2)) of (WT5)-T-30 treatment were five times and two to four times higher than (WT10)-T-30 and (WT20)-T-30, respectively. Third, during long-term freeze-thaw cycles, the patterns of cumulative N2O emissions were related to soil moisture. treatments; on the contrary, the cumulative emissions of W-45 treatments slowly increased until more than 80 cycles. Finally, long-term freeze-thaw cycles could improve nitrogen availability, prolong N2O release time, and increase N2O cumulative emission in permafrost active layer. Particularly, the high emission was concentrated in the first 27 and 48 cycles in W-15 and W-30, respectively. Overall, our study highlighted that large emissions of N2O in F-T events tend to occur in medium moisture soil at lower thawing temperature; the increased number of F-T cycles may enhance N2O emission and nitrogen mineralization in permafrost active layer.