共检索到 501

Permafrost is undergoing rapid changes due to climate warming, potentially exposing a vast reservoir of carbon to be released to the atmosphere, causing a positive feedback cycle. Despite the importance of this feedback, its specifics remain poorly constrained, because representing permafrost dynamics still poses a significant challenge for Earth System Models (ESMs). This review assesses the current state of permafrost representation in land surface models (LSMs) used in ESMs and offline permafrost models, highlighting both the progress made and the remaining gaps.We identify several key physical processes crucial for permafrost dynamics, including soil thermal regimes, freeze-thaw cycles, and soil hydrology, which are underrepresented in many models. While some LSMs have advanced significantly in incorporating these processes, others lack fundamental elements such as latent heat of freeze-thaw, deep soil columns, and Arctic vegetation dynamics. Offline permafrost models provide valuable insights, offering detailed process testing and aiding the prioritization of improvements in coupled LSMs.Our analysis reveals that while significant progress has been made in incorporating permafrost-related processes into coupled LSMs, many small-scale processes crucial for permafrost dynamics remain underrepresented. This is particularly important for capturing the complex interactions between physical and biogeochemical processes required to model permafrost carbon dynamics. We recommend leveraging advancements from offline permafrost models and progressively integrating them into LSMs, while recognizing the computational and technical challenges that may arise in coupled simulations. We highlight the importance of enhancing the representation of physical processes, including through improvements in model resolution and complexity, as this is a fundamental precursor to accurately incorporate biogeochemical processes and capture the permafrost carbon feedback.

期刊论文 2025-06-01 DOI: 10.1002/ppp.2269 ISSN: 1045-6740

This paper investigates the spatiotemporal dynamics and their changes of the southern limit of latitudinal permafrost (SLLP) and the lower limit of mountain permafrost (LLMP) in Northeast China, emphasizing the roles of climate change and human activities. Permafrost in this region is primarily distributed in the northern parts of the Da and Xiao Xing'anling mountain ranges and in the upper parts of the Changbai Mountains and at the summits of the Huanggangliang Mountains in the southern part of the Da Xing'anling Mountain Range. Permafrost degradation, ongoing since at least the local Holocene Megathermal Period (8.5-6.0 ka BP), has intermittently reversed during cooler climatic intervals but continues to exert significant impacts on regional environments, infrastructure stability, and carbon storage. Notably, the northward retreats of the SLLP since the mid-19th century underscore the sustained nature of this degradation, especially in southern patchy permafrost zones increasingly sensitive to warming and anthropogenic influences. LLMP variability is similarly shaped by a combination of climatic, hydrometeorological, ecological, and topographic factors. The distributions of SLLP and LLMP are further complicated by the presence of relict and sporadic permafrost, as well as the hydrothermal effects of vegetation and snow cover. Addressing the challenges of mapping and modeling boreal permafrost in Northeast China requires comprehensive field investigations, long-term in situ monitoring via station networks, and advanced numerical modeling. Emerging technologies, including satellite and airborne remote sensing (RS), geographic information systems (GIS), unmanned aerial vehicles (UAVs), surface geophysical methods, and big data analytics, offer new possibilities for enhancing permafrost monitoring and mapping. Integrating these tools with conventional field studies can significantly improve our understanding of permafrost dynamics. Continued efforts in monitoring, technological innovation, multidisciplinary collaboration, and international cooperation are essential to meet the challenges posed by permafrost degradation in a changing climate.

期刊论文 2025-05-14 DOI: 10.1002/ppp.2285 ISSN: 1045-6740

Soil thermal conductivity (STC) plays a crucial role in regulating the energy distribution of both the surface and underground soil layers. It is widely applied in various fields, including engineering design, geothermal resource development and climate change research. A rapid and accurate estimation of STC remains a key focus in the study of soil thermodynamic parameters. However, the methods for estimating STC and their distinct characteristics have yet to be systematically reviewed. In this study, we used bibliometrics to comprehensively and systematically review the literature on STC, focusing on knowledge graph characteristics to analyze the development trend of calculation schemes. The main conclusions drawn from the study are as follows: (1) In recent years, most studies have been focused on soil thermal characteristics and their main contributing factors, the soil hydrothermal process in the Qinghai-Tibet Plateau, geothermal equipment and numerical simulations, and the exploration of geothermal resources. (2) A systematic review of various schemes indicates that no single scheme is universally applicable to all soil types. Moreover, a single parameterization scheme fails to meet the practical requirements of land surface process models. We evaluated the advantages and disadvantages of the traditional heat conduction schemes, parameterization schemes, and machine learning-based schemes and the findings suggest that a comprehensive scheme that integrates these three different schemes for STC simulations should be urgently developed.

期刊论文 2025-05-01 DOI: 10.1007/s00704-025-05483-2 ISSN: 0177-798X

Subarctic palsa mires are natural indicators of the status of permafrost in its sporadic distribution zone. Estimation of the rate of their thawing can become an auxiliary indicator to predict climate shifts. The formation, growth, and degradation of palsas are dynamic processes that depend on seasonal weather fluctuations and local environmental factors. Therefore, accurate forecasts of palsas conditions and related ecosystem shifts must be based on a broad set of attributes of palsas from different regions of the Northern Hemisphere. With this in mind, we studied two palsa mires sites on the Kola Peninsula, for which no thorough descriptions were previously available. The first site, Chavanga, is at the southern limit of the permafrost zone under unfavorable climatic conditions and is a collapsing relic. The second site, Ponoy, in contrast, is within the sporadic permafrost zone with relatively cold and dry conditions. Our dataset was created by combining several methods to produce detailed spatial models of permafrost for the studied palsa mires. We used 3D ground-penetrating radar (GPR) survey, UAV-based orthophoto maps, peat thermometry, time-domain reflectometry, and manual sampling. We developed two integrated geospatial models that describe the active layer, the configuration of the palsa frozen core, and its thermal state and identify the zones of the most intense thawing. These observations revealed a significant thermal effect of the groundwater flow and its critical role in the palsas segmentation and rapid collapse. We have investigated a regulating effect of micromorphological features of palsa mounds such as heights, slope, depressions, and mire mineral bed through groundwater drainage. As a result, two new scenarios for the palsa degradation process have been developed, emphasizing the influence of environmental factors on the permafrost condition.

期刊论文 2025-04-06 DOI: 10.1002/ppp.2276 ISSN: 1045-6740

Estimating Top-of-Atmosphere (TOA) flux and radiance is essential for understanding Earth's radiation budget and climate dynamics. This study utilized polar nephelometer measurements of aerosol scattering coefficients at 17 angles (9-170 degrees), enabling the experimental determination of aerosol phase functions and the calculation of Legendre moments. These moments were then used to estimate TOA flux and radiance. Conducted at a tropical coastal site in India, the study observed significant seasonal and diurnal variations in angular scattering patterns, with the highest scattering during winter and the lowest during the monsoon. Notably, a prominent secondary scattering mode, with varying magnitude across different seasons, was observed in the 20-30 degrees angular range, highlighting the influence of different air masses and aerosol sources. Chemical analysis of size-segregated aerosols revealed that fine-mode aerosols were dominated by anthropogenic species, such as sulfate, nitrate, and ammonium, throughout all seasons. In contrast, coarse-mode aerosols showed a clear presence of sea-salt aerosols during the monsoon and mineral dust during the pre-monsoon periods. The presence of very large coarse-mode non-spherical aerosols caused increased oscillations in the phase function beyond 60 degrees during the pre-monsoon and monsoon seasons. This also led to a weak association between the phase function derived from angular scattering measurements and those predicted by the Henyey-Greenstein approximation. As a result, TOA fluxes and radiances derived using the Henyey-Greenstein approximation (with the asymmetry parameter as input in the radiative transfer model) showed a significant difference- up to 24% in seasons with substantial coarse-mode aerosol presence- compared to those derived using the Legendre moments of the phase function. Therefore, TOA flux and radiance estimates using Legendre moments are generally more accurate in the presence of complex aerosol scattering characteristics, particularly for non-spherical or coarse-mode aerosols, while the Henyey-Greenstein phase function may yield less accurate results due to its simplified representation of scattering behavior.

期刊论文 2025-04-01 DOI: 10.1016/j.jqsrt.2025.109365 ISSN: 0022-4073

The global cryosphere is retreating under ongoing climate change. The Third Pole (TP) of the Earth, which serves as a critical water source for two billion people, is also experiencing this decline. However, the interplay between rising temperatures and increasing precipitation in the TP results in complex cryospheric responses, introducing uncertainties in the future budget of TP cryospheric water (including glacier and snow water equivalents and frozen soil moisture). Using a calibrated model that integrated multiple cryospheric-hydrological components and processes, we projected the TP cryospheric water budgets under both low and high climatic forcing scenarios for the period 2021-2100 and assessed the relative impact of temperature and precipitation. Results showed (1) that despite both scenarios involving simultaneous warming and wetting, under low climatic forcing, the total cryospheric budget exhibited positive dynamics (0.017 mm yr-1 with an average of 1.77 mm), primarily driven by increased precipitation. Glacier mass loss gradually declined with the rate of retreat slowing, accompanied by negligible declines in the budget of snow water equivalent and frozen soil moisture. (2) By contrast, high climatic forcing led to negative dynamics in the total cryospheric budget (-0.056 mm yr-1 with an average of -1.08 mm) dominated by warming, with accelerated decreases in the budget of all cryospheric components. These variations were most pronounced in higher-altitude regions, indicating elevation-dependent cryospheric budget dynamics. Overall, our findings present alternative futures for the TP cryosphere, and highlight novel evidence that optimistic cryospheric outcomes may be possible under specific climate scenarios.

期刊论文 2025-04-01 DOI: 10.1088/1748-9326/adbfab ISSN: 1748-9326

Frozen soil resistivity exhibits high sensitivity to temperature variations and ice-water distribution. The conversion of soil water content (SWC) and resistivity based on petrophysical relationships enables the characterization of spatial distribution and changes in freezing and thawing states. Monitoring ground resistivity is essential for understanding frozen soil structure and evaluating climate change and ecosystems. The previous studies demonstrate that estimating soil resistivity below zero degrees based on the empirical model has significant errors. This work proposes a capillary bundle fractal model for frozen soil resistivity estimation based on SWC hydrologic parameters. The fractal theory describes the geoelectrical features of frozen porous media through the variable pore geometry and representative elementary volume. The sensitivity analysis discusses the potential relationships between pore parameters, conductance components, and fractal geometric parameters within frozen soil resistivity and reconstructs the hysteresis separation of freeze-thaw processes. The field test application in the seasonal freeze-thaw monitoring site demonstrates that the estimated resistivity and experimental samples are consistent with the field monitoring resistivity data. By combining unified conceptual assumptions, we established the connection between electrical permeability and thermal conductivity, offering a basis for exploring coupled hydro-thermal mechanisms in frozen soil. The proposed model accurately estimates the variations in seasonal frozen resistivity, providing a reliable reference for quantitatively analyzing the mechanisms of freeze-thaw processes.

期刊论文 2025-03-01 DOI: 10.1029/2024WR038224 ISSN: 0043-1397

Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of top-down climate and bottom-up geology controls on track morphology and hydrogeomorphic function. We find the term water track is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.

期刊论文 2025-03-01 DOI: 10.1029/2024RG000854 ISSN: 8755-1209

The Tibetan Plateau, a critical region influencing both local and global atmospheric circulation, climate dynamics, hydrology and terrestrial ecosystems, is undergoing climate-driven changes, including glacial retreat, permafrost thaw and groundwater changes. Despite its importance, implementing continuous and systematic observations has been challenging due to the area's high altitude and extreme climate conditions. In this context, seismic interferometry emerges as a cost-effective method for the continuous monitoring of subsurface structural changes driven by environmental factors and internal geophysical processes. We investigate subsurface evolution using four years of seismic data from nine stations on the northeastern Tibetan Plateau, by applying coda wave interferometry across multiple frequency bands. Our findings highlight seismic velocity changes within the frequency bands 5-10, 0.77-1.54, and 0.25-0.51 Hz, revealing depth-dependent seasonal and long-term changes. Near-surface and deeper strata exhibit similar seasonal patterns, with velocities increasing in winter and decreasing in summer driven by changes in hydrological processes, while intermediate ice-water phase strata show contrasting behaviour due to thermal elastic strain. Long-term trends suggest that the upper subsurface layer is affected by melting water and precipitation originating from Kunlun Mountains, whereas deeper layer reflect groundwater level variations influenced by climate change and human activities. This study provides insights into the environmental evolution of the Tibetan Plateau and its impact on managing local groundwater resources.

期刊论文 2025-02-18 DOI: 10.1093/gji/ggaf042 ISSN: 0956-540X

Precipitation comes in various phases, including rainfall, snowfall, sleet, and hail. Shifts of precipitation phases, as well as changes in precipitation amount, intensity, and frequency, have significant impacts on regional climate, hydrology, ecology, and the energy balance of the land-atmosphere system. Over the past century, certain progress has been achieved in aspects such as the observation, discrimination, transformation, and impact of precipitation phases. Mainly including: since the 1980s, studies on the observation, formation mechanism, and prediction of precipitation phases have gradually received greater attention and reached a certain scale. The estimation of different precipitation phases using new detection theories and methods has become a research focus. A variety of discrimination methods or schemes, such as the potential thickness threshold method of the air layer, the temperature threshold method of the characteristic layer, and the near-surface air temperature threshold method, have emerged one after another. Meanwhile, comparative studies on the discrimination accuracy and applicability assessment of multiple methods or schemes have also been carried out simultaneously. In recent years, the shift of precipitation from solid to liquid (SPSL) in the mid-to-high latitudes of the Northern Hemisphere has become more pronounced due to global warming and human activities. It leads to an increase in rain-on-snow (ROS) events and avalanche disasters, affecting the speed, intensity, and duration of spring snow-melting, accelerating sea ice and glacier melting, releasing carbon from permafrost, altering soil moisture, productivity, and phenological characteristics of ecosystems, and thereby affecting their structures, processes, qualities, and service functions. Although some progress has been made in the study of precipitation phases, there remains considerable research potential in terms of completeness of basic data, reliability of discrimination schemes, and the mechanistic understanding of the interaction between SPSL and other elements or systems. The study on shifts of precipitation phases and their impacts will play an increasingly important role in assessing the impacts of global climate change, water cycle processes, water resources management, snow and ice processes, snow and ice-related disasters, carbon emissions from permafrost, and ecosystem safety.

期刊论文 2025-02-01 DOI: 10.1007/s11430-024-1459-3 ISSN: 1674-7313
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共501条,51页