共检索到 2200

The thermal coupling between the atmosphere and the subsurface on the Qinghai-Tibetan Plateau (QTP) governs permafrost stability, surface energy balance, and ecosystem processes, yet its spatiotemporal dynamics under accelerated warming are poorly understood. This study quantifies soil-atmosphere thermal coupling ((3) at the critical 0.1 m root-zone depth using in-situ data from 99 sites (1980-2020) and a machine learning framework. Results show significantly weaker coupling in permafrost (PF) zones (mean (3 = 0.42) than in seasonal frost (SF) zones (mean (3 = 0.50), confirming the powerful thermal buffering of permafrost. Critically, we find a widespread trend of weakening coupling (decreasing (3) at 66.7 % of sites, a phenomenon most pronounced in SF zones. Our driver analysis reveals that the spatial patterns of (3 are primarily controlled by surface insulation from summer rainfall and soil moisture. The temporal trends, however, are driven by a complex and counter-intuitive interplay. Paradoxically, rapid atmospheric warming is the strongest driver of a strengthening of coupling, likely due to the loss of insulative snow cover, while trends toward wetter conditions drive a weakening of coupling by enhancing surface insulation. Spatially explicit maps derived from our models pinpoint hotspots of accelerated decoupling in the eastern and southern QTP, while also identifying high-elevation PF regions where coupling is strengthening, signaling a loss of protective insulation and increased vulnerability to degradation. These findings highlight a dynamic and non-uniform response of land-atmosphere interactions to climate change, with profound implications for the QTP's cryosphere, hydrology, and ecosystems.

期刊论文 2026-01-15 DOI: 10.1016/j.agrformet.2025.110925 ISSN: 0168-1923

Lime-activated ground granulated blast furnace slag (GGBS) is usually used to treat gypseous soils. However, sulphate-bearing soils often contain other sulphates, e.g., sodium sulphate (Na2SO4), potassium sulphate (K2SO4) and magnesium sulphate (MgSO4). Therefore, in this study, lime-GGBS was used as a curing agent for stabilising four sulphate-bearing soils, which were named as Na-soil, K-soil, Mg-soil, and Ca-soil. Unconfined compressive strength (UCS), swelling, X-ray diffraction, scanning electron microscopy and inductively coupled plasma spectroscopy tests, were conducted to explore the macro- and micro-properties of the lime-GGBS-stabilised soils. The results showed that at 5000 ppm sulphate, stabilised Mg-soil had the lowest swelling and highest UCS. At 20,000 ppm sulphate, stabilised Ca-soil had the lowest swelling, while stabilised Na-soil had the highest UCS. Generally, increasing sulphate concentration decreased swelling for Ca-soil but increased for other three soils, and decreased UCS for Mg-soil but increased for other three soils. This was because less ettringite was generated in the stabilised Ca-soil and the formation of magnesium silicate hydrate (MSH) in the stabilised Mg-soil. Therefore, the sulphate type had a significant impact on the swelling and strength properties of lime-GGBS-stabilised sulphate-bearing soil. It is essential to identify the sulphate type before stabilising the soil on-site.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2464203 ISSN: 1029-8436

The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).

期刊论文 2025-12-31 DOI: 10.1080/15440478.2024.2446947 ISSN: 1544-0478

The Tibetan Railway has introduced pressures on the fragile grassland ecosystems of the Tibetan Plateau. However, the impact of the railway on the carbon sequestration remains unclear, as existing studies primarily focus on in-situ vegetation observations. In this study, we extracted the start and end of the growing season (SOS, EOS) and maximum daily GPP (GPPmax) along the railway corridor from the satellite-derived Gross Primary Productivity (GPP) data, and quantified the extent and intensity of the railway's disturbance on these indicators. We further employed the Statistical Model of Integrated Phenology and Physiology (SMIPP) to translate these disturbances into annual cumulative GPP (GPPann). Results show that Tibetan Railway significantly influences grassland within 50-meters, causing earlier SOS (0.1086 d m-1), delayed EOS (0.0646 d m-1), and reduced GPPmax (0.0069 gC m-2 d-1 m-1) as the distance to the railway gets closer. The advanced SOS and delayed EOS contributed gains of 28.82 and 104.26 MgC y-1, but reduction in GPPmax accounted for a loss of 2952.79 MgC y-1. Railway-induced phenology-physiology trade-off causes GPPann loss of 2819.71 MgC y-1. This study reveals Tibetan Railway's impact on grassland carbon cycling, offering insights for grassland conservation and sustainable transportation infrastructure projects.

期刊论文 2025-12-31 DOI: 10.1080/17538947.2025.2554326 ISSN: 1753-8947

An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.

期刊论文 2025-12-01 DOI: 10.1016/j.talanta.2025.128233 ISSN: 0039-9140

The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10 degrees) or backward (i.e., more than 170 degrees) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0 degrees-20 degrees, 10 degrees-96 degrees, 84 degrees-170 degrees, 160 degrees-180 degrees, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0-180 degrees angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.

期刊论文 2025-12-01 DOI: 10.1016/j.optlastec.2025.113386 ISSN: 0030-3992

The freeze-thaw erosion zone of the Tibetan Plateau (FTZTP) maintains an ecologically fragile system with enhanced thermal sensitivity under climate warming. Vegetation phenology in this cryosphere-dominated environment acts as a crucial biophysical indicator of climate variability, showing potentially amplified responses to environmental changes relative to other ecosystems. To investigate vegetation phenological characteristics and their climate responses, we derived key phenological parameters (the start, end and length of growing season-SOS, EOS, LOS) for the FTZTP from 2001 to 2021 using MODIS EVI data and analysed their spatiotemporal patterns and climatic drivers. Results indicated that the spatial distribution of phenology was highly heterogeneous, influenced by local climate, complex topography and diverse vegetation. SOS generally exhibited a delayed trend from east to west, while EOS was progressively later from the central plateau towards the southeast and southwest. Consequently, LOS shortened along both east-west and south-north gradients. Under sustained warming and wetting, the region experienced intensified freeze-thaw cycles, characterised by a delayed freeze-start, advanced thaw-end and shortened freeze-thaw duration. Both climate warming and freeze-thaw changes drove an overall significant advancement of SOS (-3.1 days/decade), delay of EOS (+2.2 days/decade) and extension of LOS (+5.3 days/decade) over the 21-year period. Notably, an abrupt phenological shift occurred around 2015. Prior to 2015, both SOS and EOS advanced, whereas afterward, SOS transitioned to a delaying trend and EOS exhibited a markedly stronger delay, leading to a pronounced extension of LOS. This regime shift was primarily attributed to changes in hydrothermal conditions controlled by climate warming and evolving freeze-thaw dynamics, with temperature being the dominant factor and precipitation exerting seasonally differential effects. Our findings elucidate the complex responses of alpine cryospheric ecosystems to climate change, revealing freeze-thaw processes as a key modulator of vegetation phenology.

期刊论文 2025-11-23 DOI: 10.1002/joc.70200 ISSN: 0899-8418

Light-absorbing carbonaceous aerosols (LACs), including black carbon (BC) and brown carbon (BrC), significantly influence Earth's radiative balance and global climate. However, their atmospheric aging processes and associated optical evolution remain insufficiently understood. In this study, in situ photochemical aging of ambient LACs under varying relative humidity (RH) conditions was simulated using an oxidation flow reactor (OFR). The distinct absorption evolution of BC and BrC was investigated, and the underlying mechanisms were explored. BC absorption primarily decreased under low-RH aging but significantly increased under high-RH aging. This contrasting behavior can be attributed to RH-dependent changes in BC coating processes: the dominant loss of preexisting coatings at low RH versus enhanced formation of secondary species that preferentially coat BC under high RH. Notably, BC absorption enhancement is more sensitive to nitrate, ammonium, and secondary organic aerosol (SOA) formation than to sulfate. BrC exhibited optical bleaching under both RH conditions; however, the bleaching rate was substantially accelerated under high RH at comparable photochemical ages within the range of below 5 equiv atmospheric aging days. This is primarily due to a 2-fold increase in the aqueous-phase photo-oxidative degradation of BrC chromophores derived from biomass-burning sources, whereas nonbiomass BrC showed RH-independent bleaching. These findings show that RH strongly modulates the chemical and optical aging of LACs, with important implications for their direct radiative forcing and better representation in climate models.

期刊论文 2025-11-04 DOI: 10.1021/acs.est.5c10614 ISSN: 0013-936X

Amidst global scarcity, preventing pipeline failures in water distribution systems is crucial for maintaining a clean supply while conserving water resources. Numerous studies have modelled water pipeline deterioration; however, existing literature does not correctly understand the failure time prediction for individual water pipelines. Existing time-to-failure prediction models rely on available data, failing to provide insight into factors affecting a pipeline's remaining age until a break or leak occurs. The study systematically reviews factors influencing time-to-failure, prioritizes them using a magnitude-based fuzzy analytical hierarchy process, and compares results with expert opinion using an in-person Delphi survey. The final pipe-related prioritized failure factors include pipe geometry, material type, operating pressure, pipe age, failure history, pipeline installation, internal pressure, earth and traffic loads. The prioritized environment-related factors include soil properties, water quality, extreme weather events, temperature, and precipitation. Overall, this prioritization can assist practitioners and researchers in selecting features for time-based deterioration modelling. Effective time-to-failure deterioration modelling of water pipelines can create a more sustainable water infrastructure management protocol, enhancing decision-making for repair and rehabilitation. Such a system can significantly reduce non-revenue water and mitigate the socio-environmental impacts of pipeline ageing and damage.

期刊论文 2025-11-01 DOI: 10.1016/j.ress.2025.111246 ISSN: 0951-8320

Ensuring the accuracy of free-field inversion is crucial in determining seismic excitation for soil-structure interaction (SSI) systems. Due to the spherical and cylindrical diffusion properties of body waves and surface waves, the near-fault zone presents distinct free-field responses compared to the far-fault zone. Consequently, existing far-fault free-field inversion techniques are insufficient for providing accurate seismic excitation for SSI systems within the near-fault zone. To address this limitation, a tailored near-fault free-field inversion method based on a multi-objective optimization algorithm is proposed in this study. The proposed method establishes an inversion framework for both spherical body waves and cylindrical surface waves and then transforms the overdetermined problem in inversion process into an optimization problem. Within the multi-objective optimization model, objective functions are formulated by minimizing the three-component waveform differences between the observation point and the delayed reference point. Additionally, constraint conditions are determined based on the attenuation property of propagating seismic waves. The accuracy of the proposed method is then verified through near-fault wave motion characteristics and validated against real downhole recordings. Finally, the application of the proposed method is investigated, with emphasis on examining the impulsive property of underground motions and analyzing the seismic responses of SSI systems. The results show that the proposed method refines the theoretical framework of near-fault inversion and accurately restores the free-field characteristics, particularly the impulsive features of near-fault motions, thereby providing reliable excitation for seismic response assessments of SSI systems.

期刊论文 2025-11-01 DOI: 10.1016/j.soildyn.2025.109567 ISSN: 0267-7261
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共2200条,220页