The durability of permeable pavement needs to be further studied by accelerated pavement testing (APT). Full-scale APT facilities are commonly associated with a very high initial investment and operational costs. A piece of small-scale accelerated testing equipment, the model mobile load simulator (MMLS), was used to investigate and evaluate the mechanical properties of three types of permeable asphalt pavements, including a 4 cm porous asphalt layer with cement-treated permeable base (4PA-CTPB), 7 cm porous asphalt layer with cement-treated permeable base (7PA-CTPB), and 7 cm porous asphalt layer with cement-treated base (7PA-CTB). Under different conditions of subgrade soil, transverse and longitudinal strains at the bottom of the porous asphalt layer and average rut depth and temperature data were collected. The results indicated that 4PA-CTPB produced the maximum average rut depth but minimum resilient tensile strain. The transverse resilient tensile strain of 7PA-CTPB was significantly higher than the other two structures under both wet and dry conditions. The transverse resilient tensile strain significantly increased with increasing loading cycles with a decreasing rate, which could be affected by both load and temperature. MMLS could be used to explore and evaluate the mechanical properties of permeable asphalt pavement. From the data under dry and wet conditions, it may be better to increase the strength of the subgrade, where a suitable hydraulic conductivity coefficient should be considered.
6PPD-quinone (6PPDQ) is a recently discovered chemical that is acutely toxic to coho salmon (Oncorhynchus kisutch) and can form via environmental exposure of 6PPD, a compound found extensively in tire wear particles (TWPs). TWPs deposited on roads are transported to aquatic ecosystems via stormwater, contributing to microplastic pollution and organic contaminant loads. However, little is known about the fate of TWPs and their leachable contaminants in these systems. We conducted three experiments at a high school in Tacoma, Washington, to quantify the treatment performance of permeable pavement (PP) formulations, a type of green stormwater infrastructure (GSI), for TWPs and ten tire-associated contaminants, including 6PPDQ. The PPs comprised concrete and asphalt, with and without cured carbon fibers, to improve the mechanical properties of PPs. Pavements were artificially dosed and had underdrains to capture effluent. Three experiments were conducted to evaluate PP mitigation of tire-associated pollution using cryomilled tire particles (cTPs). The 1st and 3rd experiments established a baseline for TWPs and contaminants and assessed the potential for continued pollutant release. During experiment 2, cTPs were applied to each pavement. Our results showed that the PPs attenuated >96 % of the deposited cTPs mass. An estimated 52-100 % of potentially leachable 6PPDQ was removed by the PP systems between the influent and effluent sampling stations. Background 6PPDQ concentrations in effluents ranged from 0 to 0.0029 mu g/L. Effluent 6PPDQ concentrations were not explained by effluent TWP concentrations in experiments 1 or 2 but were significantly correlated in experiment 3, suggesting that leaching of 6PPDQ from TWPs retained in the pavement was minimal during a subsequent storm. Our results suggest that PPs may be an effective form of GSI for mitigating tire-associated stormwater pollution. The improved strength offered by cured carbon fiber-amended pavements extends PP deployment on high-traffic roadways where tire-associated pollution poses the greatest environmental risk.
In addition to the generation of industrial waste, especially in the ornamental stones sector, another problem caused by modernization which affects urban lifestyle and the environment is soil sealing. The loss of permeability leads in the surface to an increase in water runoff leading to floods, and through channels, to the transferring of these volumes to nearby water bodies leading to problems like silting up of rivers. The present work has the objective of producing permeable pavement using gravel waste in an epoxy resin matrix, and analyzing the feasibility of its use with the characterization of its properties. The slabs of permeable artificial stone were developed with the granite gravel waste having a granulometry between 10 and 20 mm. The characterization was made for porosity evaluation through water immersion, determination of the permeability coefficient and mechanical property. The results were of an (11 +/- 1.7)% void ratio of the artificial stone, which indicates low porosity, and with a permeability coefficient of 2 mm/s the material can be utilized as a permeable pavement. The maximum flexural strength value of 4.26 +/- 0.08 MPa, above the 2 MPa determined by the standard minimum, this parameter shows that this permeable pavement made with artificial stone has potential to be applied as tiling.